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Synopsis of the Thesis 

Title: Study of scale-free correlated clusters in the 
non-equilibrium and equilibrium critical phenomena 

Quite often the properties of a thermodynamic system are studied on a regular 
lattice having the discrete / continuous values of' some physical entity associated 
with each site of the lattice. A cluster on a lattice is a set of lattice sites connected 
by nearest neighbor bonds such that each cluster site has at least one neighbor in 
the cluster. In general the physical entity at a site in the cluster interacts with its 
neighboring sites and therefore two' sites of the same cluster even when they are 
far apart may also feel the mutual influence of each other propagated through the 
intermediate sites. This reflects the correlations among the different cluster sites. 
A sample of clusters is called scale-free when their sizes vary over all length scales, 
i.e., the probability distribution of the cluster sizes has long tails, typically power 
law variations which ensures the presence of very large macroscopic clusters of the 
order of system sizes. These scale-free clusters are very important since they signify 
the presence of long-range correlations in the system, the signature of criticality in 
Critical Phenomena. 

Clusters appear in many different branches of Physics in many different forms. For 
example the cluster sites in percolation theory of conductivity in impure materials 
represent the metal atoms embedded in insulating materials, in polymer physics they 
represent monomers, in magnetism they represent spins, where as in astrophysics 
they may represent stars or galaxies etc. 

In this thesis we studied statistical properties of scale-free clusters occurring in 
both non-equilibrium as well as equilibrium systems. Namely, in Part I we studied 
the avalanche clusters occurring in the sandpile models of Self-Organized Criticality 
where as the Part II is devoted to the study of clusters in equilibrium system i.e., 
the percolation model of Diagenesis in sedimentary rocks. 

Part I: Avalanche clusters in sandpile models of Self-Organized Criticality 

Spontaneous emergence of long-range correlations in non-equilibrium stationary 
critical states of non-linear dissipative externally driven systems without any fine 
tuning parameter is the basic idea of Self-Organized Criticality (SOC). Sandpile 
models are prototypical models of SOC. The deterministic Bak, Tang and Wiesenfeld 
(BTW) sandpile and the stochastic Manna sandpile are two very important and well 
studied models. The question if the critical behaviors of these two models are the 
same or different has attracted a lot of attention in this field but these researches were 
not fully successful to yield much insight into the understanding and differentiating 
the two models. 

In our two recent papers [1,2] we have studied a single sandpile model with 
quenched random toppling matrices that captures the crucial features of differ- 
ent sandpile models of self-organized criticality. With symmetric toppling matrices 
avalanche statistics falls in the multi-scaling BTW universality class. In the asym- 
metric case the simple scaling of the Manna model is observed. The presence or 
absence of a precise toppling balance between the amount of sand released by a top- 
pling site and the total quantity of sand the same site receives when all its neighbors 
topple once, determines the appropriate universality class. In [2] we extended our 
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conjecture in [1] and showed that even with asymmetric toppling matrices one can 
ensure the precise balance at all sites except on the boundary and this model also 
behaves like the BTW model. 

In the paper [3] we studied the deterministic as well as stochastic sandpile models 
on the scale-free graphs embedded in the Euclidean space. We observed that for the 
cost optimized graph, the sandpile model has the same critical behavior as the BTW 
sandpile which is consistent with our conjecture in [I], whereas for the un-optimized 
scale-free graph the critical behavior is mean-field like. 

Holes are introduced in [4] as the absence of particles (sand grains). Toppling 
rules for hole columns are defined in a similar but reverse way as the sand column 
topplings. Particle-hole symmetry in a sandpile model is studied by adding particles 
with a probability p and holes with 1 -p. It has been found that the system is critical 
for particle avalanches for p > i/2 and for hole avalanches for p < I/2 where as at 
p --1/2 the power spectrum for the time series of fluctuating system masses has 
1 / f  noise. 

A simple fixed energy sandpile model is studied in [5] on an oriented square lattice 
using both deterministic as well as the stochastic dynamical rules. The critical 
behavior of this model is observed to be different from the directed percolation 
critical behavior. 

Pa r t  II" A perco la t ion  model  for Diagenesis  in s ed imen ta ry  rocks 

Diagenesis is a complex restructuring process by which granular systems evolve 
in geological time scales from unconsolidated, high-porosity packings toward more 
consolidated, less porous structures. We studied a percolation model to investigate 
the phenomenon of Diagenesis [6]. The cementation and the dissolution processes 
are modeled by the culling of occupied sites in rarefied and growth of vacant sites 
in dense environments. Starting from sub-critical states of ordinary percolation the 
system evolves under the diagenetic rules to critical percolation configurations. The 
same model in a three dimensional cubic system has been studied in [7]. 

This thesis is based on the following publications: 
1. Precise Toppling Balance, Quenched Disorder, and Universality for Sandpiles 

R. Karmakar, S. S. Manna, and A. L. Stella, Phys. Rev. Lett. 94, 088002 
(2005). 

2, Sandpile model on a quenched substrate generated by kinetic self-avoiding trails 
R. Karmakar and S. S. Manna, Phys. Rev. E 71, 015101 (2005). 

3, Sandpile model on an optimized scale-free network on Euclidean space 
R. Karmakar and S. S. Manna, J. Phys. A: Math. Gen. 38, L87-L93 (2005). 

4. Particle-hole symmetry in a sandpile model 
R. Karmakar and S. S. Manna, J. Stat. Mech., L01002 (2005). 

5. Directed fixed energy sandpile model 
R. Karmakar and S. S. Manna, Phys. Rev. E 69, 067107 (2004). 

6. A Percolation Model of Diagenesis 
S. S. Manna, T. Dutta, R. Karmakar and S. Tarafdar, Int. J. Mod. Phys. C 13, 
319 (2002). 

7. A geometrical model o f  diagenesis using percolation theory 
R. Karmakar, S. S. Manna and T. Dutta, Physica A, 318, 113 (2003). 



Chapter 1 

Introduction 

1.1 PART I: Self-organized criticality 

A self-similar pattern is made of parts which look similar to the whole pattern. 
Around late seventies, Mandelbrot observed that there exists large number of such 
patterns in nature. For example coast lines of a country is well known to be self- 
similar. The same type of tortuosity of the coast line is observed over many length 
scales ranging from few kilometers to several thousand kilometers. Similarly moun- 
tain landscapes, electrical breakdown patterns, viscous fingering patterns or vortices 
in turbulence etc. are known to have self-similar structures. This is an important 
observation since it means that these patterns are correlated over large distances 

[i, 2]. 
Much effort had been devoted for characterization of these patterns. Mandel- 

brot also observed that many such patterns have non-trivial non-integral Hausdorff- 
Besicovitch dimensions. Mandelbrot coined the word 'fractal' for these self-similar 
objects. The mass M(R) of an object of physical size R varies as M(R) cr Rds 

where df is known as the fractal dimension of the object [1, 2, 3]. 
There is another ubiquitous phenomenon which has not been understood fully for 

decades. When a direct current flows through an electrical device, a low frequency 
flicker noise voltage arises between the contacts. It has been observed that the low 
frequency noise power spectra of such systems show a power law dependence on the 
frequency f of the voltage source [4, 5]. In a similar way the fluctuating time signals 
in random resistor networks, intensity of light waves from distance stars or even 
price indices in economic stock markets etc. have power spectra decaying as power 
laws with exponents nearly equal to unity at low frequencies: S(f) ~x f-Z. This 
phenomenon also represent long-ranged correlations in temporal behavior of these 
systems. 

Bak, Tang and Wiesenfeld (BTW) first argued that different ways to characterize 
the self-similar fractals or studying the 1If type power spectra of different fluctu- 
ating signals may not be sufficient in understanding these phenomena. They tried 
to put forward their argument that both these phenomena may not be independent 
and often are actually the "two sides of the same coin" i.e., they are the spatial and 
temporal manifestations of the same phenomenon [6]. 

Their argument is as follows. It is well known that self-similar structures are 
observed in systems undergoing second order phase transitions. In laboratories 
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control parameters like temperature is tuned to arrive at the critical points to observe 
these self-similar patterns where the spatial and temporal correlation functions are 
invariant under scale transformations, implying that these systems at critical points 
have no intrinsic length and time scales [7]. 

Bak and his collaborators argued that in nature there is no one to do this fine 
tuning, yet extended dynamical systems do show self-similarities or long range cor- 
relations. How this can then happen in nature? They suggested that there are 
self-organization processes in built in these systems which by themselves may evolve 
to critical states and therefore do not need the hands of experimentalists to tune 
the control parameters. In 1987 BTW introduced and defined the phenomenon 
of self-organized criticality to explain the occurrence of spatial self-similar fractal 
structures as well as 1/ f  type power spectra in slowly driven spatially extended 
dissipative systems in the following way: 

In the phenomenon of Self-Organized Criticality (SOC) an externally driven sys- 
tem dynamically evolves to a non-equilibrium stationary critical state showing spon- 
taneous emergence of the long-range spatio-temporal correlations in the absence of 
any fine tuning parameter [8, 9, 10]. 

BTW suggested that such a system under the evolution of its own dynamical rules 
self-organizes itself to spontaneously reach the critical states where small perturba- 
tions can lead to bursts of activities called avalanches whose sizes and durations 
vary up to limits determined by the finite size of the system. There are two widely 
different time scales involved in such systems, the larger one corresponds to the rate 
of external driving and the smaller one due to the microscopic evolution rate of the 
avalanches. The critical states of these systems are robust with respect to the arbi- 
trary initial conditions the systems start with. This critical state is different from 
those in the classical critical phenomena in equilibrium statistical mechanics in the 
sense that no fine tuning like temperature, pressure etc. is necessary to arrive at 
this state - the system is attracted to the basin of attraction which is the critical 
state of the self-organizing dynamics. The signature of the long-range correlation 
in the critical state is the power law distribution of the avalanche sizes and their 
durations. 

BTW proposed that a sandpile should be one of the simplest possible system 
exhibiting the self-organized criticality. Consider the formation of a sandpile on a 
fixed horizontal base. The pile is being grown by adding one or few sand grains at 
a time at arbitrary locations on the platform. At the early stage the growing shape 
of the pile is quite random and varies from one experiment to the other. At this 
stage, addition of sand grains create sand avalanches on the surface of the growing 
sandpile whose sizes are tiny i.e., they disturb only small local regions on the pile. 
However after a long time the sandpile takes a steady fixed shape in the form of a 
cone, characterized by certain angle of repose (the angle between the surface of the 
pile and the horizontal plane). Further addition of sand grains at this stage create 
sand avalanches whose sizes may occasionally be very large and more and more 
avalanches drop out sand mass through the boundary so that the steady shape of 
the pile is maintained. BTW argued that appearance of large avalanches which 
are as big as the system itself reflects the appearance of long-range correlations in 
space as the signature of criticality. They suggested that the strengths (size and 
durations) of these avalanches should have power-law distributions. 
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It has also been proposed that the concept of SOC may be applicable to describe 
physical phenomena in many other complex systems like spread of forest fires [11, 12], 
river networks [13, 14, 15], energy release during earthquakes [16, 17], biological 
evolution [18] etc. All models describing these systems have all features of self- 
organized critical systems. 

1.1.1 Sandpile experiments 

Motivated by the idea of Self-Organized Criticality, several experiments have been 
done on sandpiles. 

In one experiment [19] a semicircular drum filled with a granular material was 
slowly rotated about its horizontal axis creating a sandpile. Grains fell vertically 
downward across its edge and were allowed to pass through the plates of a capac- 
itor. Power spectrum analysis of the time series for the fluctuating capacitance 
showed that small avalanches obeyed power law distributions of limited size while 
big avalanches followed a different distribution. 

In a second experiment [20] a sandpile was formed by dropping sand on a hor- 
izontal circular disc. On further addition of sand, avalanches were created on the 
surface of the pile whose size is measured by the mass of the avalanches of sand 
leaving the plate. It was found that for smaller piles the avalanche size distribution 
obey a scaling behavior while for larger piles the scaling did not work very well. 

In another experiment [21] a pile of rice is formed by dropping grains of rice in the 
narrow gap between two vertical glass plates. Due to the anisotropy of the grains, 
various packing configurations were observed. The energy dissipated between two 
consecutive profiles determined the size of an avalanche. SOC behavior was observed 
for grains with a large aspect ratio but not for less elongated grains. Thus laboratory 
experiments on sandpiles do not always show criticality. 

1.1.2 The Bak, Tang and Wiesenfeld (BTW) sandpile model 

If a sandpile is built up on a flat surface by randomly adding sand, the slope of the 
pile increases and will reach a critical value beyond which sand slides off. BTW 
mimicked this dynamics by their sandpile model, commonly known as BTW model 
[8]. In BTW sandpile automata, the prototype model for SOC, due to slow external 
driving the system evolves to a critical state with activity distributed on all length 
scales. Generally the sand grains can also be identified as energy, stress or pressure 
quanta. 

In the simplest possible version, the BTW model is defined on a d-dimensional 
hyper-cubic lattice of linear extent L. Every site i of the lattice is associated with a 
non-negative integer variable hi representing the height of the sand column at that 
site measured by the number of sand grains. Starting from an arbitrary initial sand 
distribution profile corresponding to a specific set of values of the heights of sand 
columns at every lattice site the system is externally driven by adding sand grains 
one at a time at randomly selected sites i and thus increasing the heights at those 
sites by unity: 

hi ~ hi + 1. (1.1) 
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However, the sand column at every site is stable up to a certain height H - 1 ,  beyond 
that  the column becomes unstable. An unstable sand column is called active and 
therefore it topples with probability one. Without the loss of generality in BTW 
model the value of the threshold height H is chosen to be equal to 2d at all lattice 
sites. Therefore when hi _> H the active sand column at the site i topples and 
relaxes by reducing its height by H as: 

hi ~ hi - 2d (1.2) 

and these many grains are distributed equally among the 2d neighboring sites j as: 

1. (1.3) 

In some situations some of the neighboring sites may have their column heights 
H - 1 before the toppling. On receiving grains due to toppling at the site i, these 
sites also become active and therefore topple. Consequently the topplings at these 
sites may create additional topplings at their further neighbor-hood in a similar way. 
This creates a cascade of sand column topplings in the system. The dynamical 
process thus created in the system which is extended over a certain region of space 
and continues for a certain interval of time is called an avalanche. This avalanche 
terminates when sand columns at all sites become stable again. Lattice sites on the 
boundary have less than 2d neighbors within the system. Therefore when a site on 
the boundary topples, some grains are dropped outside the boundary. This implies 
that  corresponding to the inflow of grains in the system due to the external driving, 
there is an outflow of grains from the system through the boundary as well. As a 
result a stationary state is ensured when the fluxes of inflow and outflow currents 
of sand grains balance. It is to be noted that  the presence of a boundary through 
which grains can flow out is absolutely essential without which there can not be any 
stationary state. 

1.1.3 Toppling matrix formulation 

Toppling rules in the BTW model can be generalized by defining an integer 'top- 
pling matrix' (TM) A [22, 23]. Here the sandpile model is defined for an arbitrary 
connected graph ~ of N vertices. As before non-negative integer height variable hi 
is associated with all vertices of the graph. During a toppling at the vertex i, all 
heights are updated as hj --* hj - Aij, with {j = 1, N} where the toppling matrix 
satisfies the conditions: A i i >  0 for all i, and Aij < 0 for all i # j .  This means that  
due to a toppling at the vertex i, - A i j  grains are transferred to the vertex j .  With- 
out the loss of generality the threshold heights may be chosen as Hi = A~i. Clearly 
the BTW model is a special case of this formulation where A i i =  4, Aij---- - 1  for 
I i - j l = l a n d A i j = 0 f o r  l i - - j l > l .  

1.1.4 Abelian sandpile model (ASM) 

It was first observed by Dhar that the same final stable configuration C of sand 
column heights (hi < H, i = i, N) is obtained independent of the sequence in which 
grains are added at different sites of the system to reach this stable configuration [22]. 
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1 3  1 4  2 0  2 0  3 0  3 1  

3 2  3 2  3 3  4 3  0 4  1 0  

1 3  1 3  2 3  2 4  3 0  3 1  

3 2  4 2  0 3  0 3  0 4  1 0  

Figure 1.1: Abelian dynamics 

This is the result of the fact that the stable configuration is actually independent of 
even the sequence of microscopic toppling events that led to this stable configuration. 
For example, if at an intermediate stage during the progress of an avalanche if two 
sites i and j are both active, the same height configuration is obtained if i is toppled 
first and then j or the vice versa. Successive application of this argument shows 
that C is independent of the sequence of sand grain additions at different sites of 
the graph as shown in Fig.1.1. 

Dhar proposed that adding a sand grain at the site i may be represented by an 
operator ai [22]. Therefore if a stable configuration C' is obtained by adding a sand 
grain to a site i of a stable configuration C and then relaxing, it is represented by: 

C ' =  a~C. (1.4) 

Therefore in terms of sand addition operators the independence of an arbitrary con- 
figuration C" obtained by adding two sand grains at sites i and j on C is represented 
by: 

a~ajC = aja~C = C" which implies a~aj = ajai or [a~, aj] = 0 (1.5) 

This implies that the grain addition operators commute for all i, j. These operators 
ai have unique inverse and they form an Abelian group satisfying the algebraic 
relation, YIj a~ ~ = I for all i, which means that adding A~i particles at site i is 
same as adding one particle at each of the neighbors of i. This is called the Abelian 
Sandpile model (ASM). 

Due to the Abelian property it has been possible to obtain many exact results for 
the ASM [22, 23]. Dhar showed that the ASM dynamics partitions the whole state 
space of the sandpile into two regions, namely: Recurrent and Transient. Sandpile 
height configurations occurring in the stationary state are the recurrent states and 
they occur with uniform probability. All other states are transient states which 
never occur in the stationary state. It is estimated that compared to the transient 
states the recurrent states are of measure zero. Therefore an arbitrarily selected 
random configuration is almost always a transient configuration. Under the sandpile 
dynamics the system moves through a sequence of several transient states till it 
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Figure 1.2: Three examples of FSC on a square lattice BTW sandpile. 

reaches a recurrent state. Once it reaches a recurrent state the system remains in 
the recurrent state and cannot come out of it. An important result of the ASM is 
that the total number of distinct recurrent configurations is given by the determinant 
of the toppling matrix i.e., detA [22, 23], 

Dhar had formulated a very precise prescription to identify if a stable configura- 
tion is recurrent or transient. This is done by defining a forbidden sub-configuration 
(FSC). A FSC is a set of connected vertices on the graph ~ such that the height 
of the sand column hi at each vertex i is less than the number of neighbors of i in 
the set. Dhar showed that a recurrent state can never have a FSC. Simple exam- 
ples of FSCs on the square lattice graph are shown in Fig.l.2. To check that if an 
arbitrary stable height configuration has any FSC or not, a burning algorithm [24] 
is proposed. If the fire completely burns the graph the stable state has no FSC and 
it is a recurrent configuration. On the other hand if it is not completely burnt the 
state must have at least one FSC and therefore the state is transient. 

1.1.5 The  M a n n a  sandpile  mode l  

Manna introduced a simple stochastic version of the BTW sandpile model [25]. In 
this model not only the sand grains are added to the system in randomly selected 
positions but also the grains are distributed randomly during the topplings. The 
heights of the sand columns at every site have only two possible values: either hi = 0 
i.e., empty site or hi -- 1 i.e., site occupied by a single grain only. The threshold 
height H value for each lattice site is assigned to be 2. When the height hi of the 
sand column at a site i exceeds the height H - 1, a toppling event takes place: 

If, hi >_ H hi ~ 0 (1.6) 

and each grain at the site i is transferred to a randomly selected neighboring site j. 
There is also a simpler version of Manna model when the toppling site i loses 

only two grains i.e., hi -~ hi - 2 and each of these two grains is transferred to a 
randomly selected neighboring site. It may be noticed that even after transferring 
the pair of grains the site i may remain unstable. 

1.1.6 Structure  of  avalanches 

In a sandpile model a site can topple more than once in a single avalanche. In 
general different sites visited by the avalanche topple different number of times. The 
structural details of an avalanche become very distinct if the sites which toppled the 
same number of times are marked by one color. Therefore different colors are used 
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for marking different subsets of sites. In Fig.l.3 we show such color pictures of a 
BTW and a Manna avalanches. It is observed that the BTW avalanche has a very 
nice structure. The outermost sites form the set1 which have toppled only once. 
Adjacent to these sites and inside the avalanche are the set of sites which have 
toppled twice (set2). These sites are completely surrounded by the set1 sites. The 
general rule is the seth of sites which have toppled n times are completely surrounded 
by the seth-1 sites. Different sets form different toppling zones and the maximally 
toppled zone form the innermost core of the avalanche. The origin of the avalanche 
where the sand grain was added must be within the maximally toppled zone and it 
must be situated at the boundary of this zone. 

The structure of the BTW avalanches can be explained in the following way. An 
arbitrary site i (other than the origin) topples for the first time by receiving grains 
from the topplings of its {j2} neighbors. It then donates grains to its {j~} untoppled 
neighbors and gives back grains to the {j2}. Therefore {j2} neighbors get back one 
grain each as they transferred to the site i. This implies that the site i topples for 
the second time only if its all {j2} neighbors have toppled at least twice or more. 
This is true in general and a site which topples for the n-th time must have few 
neighbors which have toppled n-th times or more. This indicates that the (n + 1)-th 
toppling zone is completely surrounded by the n-th toppling zone and the avalanche 
is divided into multiple toppling zones. The origin where a sand grain was dropped 
does not need to follow this but necessarily it has to be situated on the perimeter 
of the maximally toppled zone. 

Another point to note is BTW avalanches are fully compact and cannot have 
holes or cluster of sites which have not toppled but are completely surrounded by 
the toppled sites. For example, a single site hole is not possible since even if it was 
empty it will get four grains from the neighbors and therefore will topple. Similarly 
a hole with a pair of adjacent sites is also not possible since each of them should 
have received three grains each. In spite of that they have not toppled implies that 
both the sites were vacant and therefore the pair of sites is an FSC which cannot be 
present in the stationary state. 

In Manna model the avalanches do not have such a systematic structure. This is 
because in a toppling each grain is transferred to a randomly selected neighboring 
site, Let during a toppling at the site i, t he  neighbor sites jl  and j2 get one grain 
each. In case both j l  and j2 had already one grain each, these sites will topple. It 
may happen that none of the four grains distributed by jl and j2 comes back to 
the original site i and therefore there is no guarantee that the site i will topple for 
the second time. Therefore unlike BTW avalanche, in a Manna avalanche the mul- 
tiply toppled sites are randomly scattered over the region covered by the avalanche. 
Moreover, unlike BTW avalanche, there may be holes in the Manna avalanche. 

1 . 1 . 7  A v a l a n c h e  s i z e  d i s t r i b u t i o n s  

It is necessary to measure the strength of an avalanche quantitatively, generally 
called the size of the avalanche which is usually defined in a number of ways. For 
example, the total number s of topplings in an avalanche is the most popular measure 
of its size. The spatial area of the avalanche measured by the number a of distinct 
sites which toppled at least once. The length r of one side of the smallest square 
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Figure 1.3: Multiply toppled sites within the avalanches are shown by circles of 
different colors: l(black), 2(red), 3(blue), 4(green), 5(magenta) and 6(orange) for 

(a) BTW model and (b) Manna model. 

which covers the avalanche is the spatial extent of the avalanche. Lastly the life 
time T of the avalanche is the duration over which the activity persists. 

During the progress of the avalanche one unit time is defined through the following 
four steps in a parallel updating process: 
�9 At an intermediate time t, a list is made of all vertices that are unstable. 
�9 The heights at these vertices { are reduced by Au each. 
�9 Corresponding to every vertex { of this list -Aij grains added to all vertices j. 
�9 All vertices in the list and their neighbors are searched to make a renewed list of 
unstable sites in time t + I. 

The signature of the criticality in the non-equilibrium stationary state of the 
system is the development of the long-range spatio temporal correlations. This is 
reflected in the power law variations of the probability distributions of the avalanche 
sizes. If four measures i.e., {s, a, r, t} of the avalanche size are denoted by a general 
notation x then in the critical state their probability distributions vary as: 

Prob(x)  ~ x - ~ .  (1.7) 

Since these four measures are different measurements  of the  same r andom avalanche, 
all of t hem are not independent  variables and therefore are related to one another  
by scaling relations. Between any two measures x, y C {s, a, t, r} one can define 
mutua l  dependence as 

<y> ~ x ~ .  (1.8) 

These exponents are related to one another, e.g. 

"Yt8 = 'Tt r "Yrs.  (1.9) 

Also since the number of avalanches between x and x + dx is the same as that 
between x ~ and x~+ dx ~ we have the relation Prob(x)dx ~ Prob(xl)dx ~ which implies 
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another scaling relation: 
O'x~ = (Tx - I ) / ( T ~ -  i). ( I . i0)  

The variation of the average avalanche size <s(L)> with the system size can be 
estimated using the following argument. Since in the stationary state the inflow rate 
of grains is equal to the outflow rate of grains, corresponding to each grain added, 
one grain must have to drop out of the system thorough the boundary. Since grains 
are dropped at randomly selected locations the dropping point is on the average at 
a distance proportional to L from the boundary in system of linear extension L. 
Since in a toppling the grains are distributed among the neighbors isotropically in 
all directions, the individual motion of a typical grain must be diffusive. Therefore 
on the average a grain, while executing a diffusive motion, takes (9(L 2) steps to 
travel a distance L to reach the boundary which is done by executing L 2 topplings. 
This implies that  average avalanche size must grow with L as L2: 

<s(L)> ~ L 2 (1.11) 

It may be noted that  this result is very general and independent of precise shape 
of the boundary and dimension as long as the grain distribution in every toppling 
event is isotropic, short range and each grain has to travel a distance (9(L) to reach 
the boundary. 

1.1.8 Fini te  size scaling of the  avalanche size d is tr ibut ions  

There is an upper bound for each measure of the avalanche sizes which strongly 
depends on the system size. For example in the case of BTW model on a square 
lattice of size L the upper bound of the avalanche area a is obviously L 2. Similarly 
the upper bound of the avalanche size s varies with the system size as L 3. This is 
easily understood in a sandpile on an odd size square lattice L = 2n+1 having hi = 3 
at all sites. Now if a grain is dropped at the center then the resulting avalanche has 
the largest size with n + 1 different concentric square shaped toppling zones and the 
avalanche size is proportional to L 3. 

However when we collect a large sample of data  for the avalanche sizes in the 
stationary state we hardly get an avalanche whose size equals the upper bound. 
Actually the avalanche size distribution decays much faster than the corresponding 
power law in Eqn. (1.7) at a cut-off size xc(L) and it depends on the system size as: 

xc(L) ~ L D~. (1.12) 

It is generally assumed that  the avalanche size distributions in a finite size system 
obeys standard finite size scaling (FSS) [26, 27, 28] forms for any measure x 6 
{s ,a , t , r }  as: 

Prob(z,  L) ~ x-r~x(x/LDx), (1.13) 

where the scaling function ~'~(y) ~ constant in the limit of y ---, 0 and ~'~(y) 
approaches zero very fast for y >> 1. The critical exponents Tx and D~ characterize 
the scaling of the distribution. Dx determines the cutoff value of the quantity x 
with system size L. 
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1.1.9 Moment  analysis 

To check the validity or violation of FSS exponents various moments of Prob(x, L) 
were evaluated [26, 27, 29]. The q-th moment is defined as 

(Xq>L = / xqProb(x, L)dx (1.14) 

Assuming a power law behavior of the probability distribution for the whole 
accessible range of avalanche sizes, the q-th moment has the size dependence 

(Xq)L ~ LD| 1) (1.15) 

In general one can write (XqlL ~ L ~x(q), where the exponent ax(q) can be es- 
t imated from the slope of the l o g -  log plot of (Xq>L as a function of L. Thus 
ax(q) ~ Dx(q--Tx+l) f o r q >  Tx--1 ando'x(q) =OforO < q < Tx--1.  I fFSS 
hypothesis is correct one can compute Dx by calculating do'x(q)/dq which takes the 
constant value Dx for large q. For very small values of q the behavior of a~ (q) is 
nonlinear with respect to q as the determination of ax (q) is easily affected by finite 
size effects. Once the exponent Dx is computed the corresponding Tx is obtained 
by an extrapolation to the horizontal axis. In case of Manna model this derivative 
of the exponent ax(q) saturates quickly with increasing q indicating a constant D 
value [27] whereas for the BTW model the derivative is marked by a finite curvature 
which indicates that  the exponent D is not well defined for this model. 

1.1.10 Wave analysis 

An important property of the sandpile avalanches is that  they can be decomposed 
into waves of topplings [30, 31]. In other words an arbitrary avalanche can be 
considered as a superposition of a number of waves of topplings. These waves yields 
more informations about the structural details of the avalanche. 

Waves of topplings are generated by adding one grain of sand at a given lattice site 
O, and allowing the site to relax. The first wave is the set of all toppled sites due to 
the toppling at the origin at O, while the origin is prevented from a second toppling. 
After the completion of the first wave if O is still unstable it is toppled for the second 
time and the second wave is allowed to propagate but a possible third toppling of 
O is prevented until the second wave is finished. The set of sites which toppled for 
the second time give the second wave of toppling. This process continues until the 
origin O becomes stable and the avalanche terminates. An interesting property of 
waves in the BTW model is that  the set of lattice sites which topple has no holes. 
On the contrary for the Manna model this is no longer true. In this case the waves 
can have holes and can include sites which topple more than once. 

Now if a set of a large number of avalanches is considered, each avalanche is 
decomposed its constituent waves and if all these waves are treated on the same 
footing then the wave sizes s, the number of sites visited by a wave, have a probability 
distribution which satisfies the following finite size scaling form: 

P~(s, L ) ~  s-rwfw(s/LD'~), (1.16) 
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where fw is a suitable scaling function. For BTW waves Tw = 1 and Dw = 2 in d = 2 
[31] whereas the waves in Manna model obeys FSS with Tw ~ 1.31 and Dw ~ 2.75 
[32]. 

A special set of avalanches in the BTW model consists of avalanches which start 
from the boundary having only one wave each whose size distribution obeys FSS 
with D~ = 2 and T~ = 1.5 [31]. 

It is also observed that  the successive waves of topplings in an avalanche, and the 
whole set of waves in a series of successive avalanches are non-trivially correlated. If 
{sl, s2, s3, ..} constitute the time series of successive wave sizes the autocorrelation 
function of this series is defined by: 

C ( t , L )  = <Sk+tSk>L -- (Sk>L 2 
<S~>L- <Sk>L 2 (I.17) 

where the expectation values refer to samples with different L. Recently it has been 
shown [32] that  for the BTW model in d = 2 the autocorrelation function has long 
range correlations which approximately scales as 

C ( t , L )  ,,~ t - ~ ~  D~ (1.18) 

with T~ ~ 0.40 and Dc ~ 1.02, whereas for the Manna model the size of a wave is 
just uncorrelated as the autocorrelation function approaches 0 as soon as t > 0. 

1.1.11 S o m e  more  sandpi les  

* D i r e c t e d  s a n d p i l e  m o d e l  ( D S M )  

A simple but non-trivial and exactly solvable version of the sandpile model is the 
directed sandpile model [33, 34]. Here the sand grains are transported along a pre- 
ferred direction. The directed ASM [33] was introduced to account for the fact that 
under gravity particle would only fall down. This model is simply defined on a 45 ~ 
oriented square lattice. Sand grains are added on the top edge with equal probability. 
On toppling one grain of sand is distributed to each of the two downward neighbors. 
Periodic boundary conditions is imposed in the horizontal direction. Particles can 
leave the system from the bottom. For DSM the distribution of avalanche size s 
varies as s -ra for large s with Ts ---- 4/3 and the distribution of avalanche duration 
t varies as t -rt with Tt = 3/2. Further the directed version of the two-state Manna 
sandpile model was studied and it was found that the set of critical exponents de- 
fines a different universality class [35, 36]. In a recent paper [37] several sandpile 
models with stochastic toppling rules is' studied. Any grain arriving at a site during 
the avalanche process get stuck there with a certain nonzero probability. It is found 
in this paper that for models with a preferred direction, the avalanche exponents 
corresponds to those of critical directed percolation clusters, whereas for models 
without a preferred direction, avalanche exponents are those of directed percolation 
clusters in one higher dimension. 

�9 Continuous energy model ( C E M )  

Zhang [38] had introduced a model where the energy E is stored at the lattice sites. 
An amount of energy 6 which varies uniformly within (0 < 6 < i) is added at 
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randomly selected sites: Ei -~ Ei + 1. When the energy at a site exceeds a threshold 
E, nax an activation event occurs at i and the full amount of energy at this site is 
divided into 2d equal parts and transferred to the neighboring sites. The transferred 
energy in turn can excite further activations in their neighborhood resulting to an 
avalanche of successive activations. This model has power law distributions of the 
avalanche sizes like: D ( s )  ,.~ s -~" and using some assumptions about compactness of 
avalanche clusters Zhang predicted T = 2 -- 2/d as well as the dynamical exponent 
z = (d + 2)/3 in d-dimensions for 1 _< d < co. For d = 2 this value disagrees with 
the numerical estimate T = 1.22 obtained in [39, 40]. 

�9 Cr i t i c a l  s lope  m o d e l  ( C S M )  

In the critical slope model, the stability of a sand column depends on the local slope 
of the surface of the sandpile i.e. the first derivative of the height function [41]. 
When the local slope at a site along any of the neighboring directions exceeds a 
preassigned value zc, the site topples. For example in [41] the toppling rule used is 
the following: 

If, h i , j -  hi+l,j _> Zc, or hi,~- hi,~+l _> Zc, or h~ , j -  h i - l j  _> zc, or h~,j- h~,~-i >_ zc 
(1.19) 

then the sand column at site (i, j )  becomes unstable and topples. During the top- 
pling the grain distribution rule is same as in BTW model. Outside the system the 
height is always maintained at zero. It is to be noted that  CSM is a non-Abelian 
sandpile model [41]. 

�9 Critical Laplacian m o d e l  ( C L M )  

In a similar way, in the critical Laplacian model the stability of a sand column 
depends on the local Laplacian i.e. the second derivative of the height function [41]. 
When the local Laplacian exceeds a preassigned value Ic the sand column topples. 
For example in [41] the toppling rule used is the following: 

If, 4hi,j - hi+l,j - hi,j+1 - hi-l,j - hi,j-1 _> lc (1.2o) 

then the sand column at site (i, j)  becomes unstable and topples. After toppling 
the dynamics is same as in the BTW model. CLM is also non-Abelian. 

1.1.12 Universality of sandpile models  

Though some efforts have been given towards the analytical calculation of different 
quantities of the Abelian sandpile model [22, 23] the exact values of the critical expo- 
nents of ASM are still not known. The numerical and mean-field values of the critical 
exponents of different sandpile models are listed in Table 1.1. In spite of extensive 
efforts over last several years it has been found that  BTW model shows scaling 
anomalies. Numerical estimate of the exponents have yielded scattered values, for 
example, estimate of the exponent T8 for ASM model in two dimensions ranges from 
1.2007 [41] to 1.27 [42] and 1.293 [43] etc. It has been shown recently that  the ASM 
obey a multi-scaling behavior [26, 29]. On the other hand the stochastic Manna 
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BTW 
BTW 
BTW 
BTW 
BTW 
Manna 
Manna 
Manna 
DSM 
Zhang 
Zhang 
CLM 

[41] 2 
[42] 2 
[43] 2 
[44] 3 
[44] 4,5,6 
[25] 2 
[42] 2 
[43] 2 
[33] d 
[38] d 
[43] 2 
[41] 2 

T8 
1.2007 

1.27 
1.293 1.330 1.665 1.480 
4/3 4/3 2 8/5 
3/2 3/2 2 
1.28 1.47 
1.27 

1.275 1.373 1.743 1.493 
4/3 3/2 

2(1- i/d) 
1.282 1.338 1.682 
1.288 1.508 

ra T~ Tt D8 Da 
1.313 

2.73 2.01 

3 3 
4 4 

2.75 
2,74 2.02 

Table 1.1: Critical exponents of different sandpile models. 

sandpile model is observed to be better behaved and there is good agreement of 
numerical values of its exponents determined in different investigations. Thus the 
issue whether the deterministic BTW model and the Manna model belong to the 
same universality class or not is not fully settled yet and has attracted much at- 
tention. A number of works [25, 42, 45, 46] claimed that they belong to the same 
universality class, whereas a number of other papers [27, 28, 43, 44, 47, 48] argued in 
favor of their universality classes being different. Real space renormalization group 
calculation [45, 46] suggested that different sandpile models like the BTW and the 
Manna model belong to the same universality class. Then universality was found 
between the discrete BTW model and the continuous Zhang model in the dynam- 
ical renormalization group calculations [49, 50]. Early stage numerical simulations 
of the Manna and BTW models show that the avalanche distributions are described 
by the same power law exponents and obey the same scaling [25]. Later Ben-Hur 
and Biham [47] analyzed the scaling of conditional expectation values [51] of vari- 
ous quantities and found significant differences in the exponents for the two models 
and predicted that Manna model belong to a different universality class from that of 
BTW model. This method was later applied to the Zhang model which was declared 
non-universal [48]. The moment analysis of the size distribution of the BTW and 
Manna sandpile model led Chessa et. al. [42] to the conclusion that both models 
are characterized by the same scaling exponents and thus belong to the same uni- 
versality class but Liibeck showed that the moment behavior of both the BTW and 
the Manna model differ significantly [27]. Thus the precise identification of a key 
factor which may control the two behavior was absent before our works described 
in chapter 2. 

1 . 2  S a n d p i l e  m o d e l s  o n  c o m p l e x  g r a p h s  

It was Dhar [23, 52] who first observed that the sandpile model can be defined on an 
arbitrary connected graph ~. Such a graph is defined in terms of two sets: l~ a set 
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. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

Netwo rks  
Population 
Internet 
World-WideWeb 

N o d e s  
Individuals 
Routers / Auto. Systems 

Links 
Acquaintances 
Ethernet Cables 

Web pages Hyperlinks 
Telephone Networks Telephones Calls 
Railway Networks Stations Trains 
Power'Grids Relay Stations Transmission Lines 
Actor Networks Actors  Movies 
Sports Persons Players Clubs 
Collaboration Networks Authors Joint Papers 
Citation Networks Papers Citations 

Table 1.2: Examples of different real'world networks. 

of N vertices {Vl, v2, v3, . . . ,  VN} and another set $ of L edges {el, e2, e3, ..., eL} such 
that each member of the set E corresponds to a pair of vertices in the set )?. On a 
connected graph one can go from one vertex to any other vertex by hopping through 
the edges. In a sandpile model defined on an arbitrary connected graph, unit grains 
of sand added at the vertices of the graph one by one. The threshold height Hg at 
each vertex i depends on the vertex i. Without the loss of generality H~ is made 
equal to the degree ki of the vertex which is the number of edges meeting at this 
vertex. Some vertices of the graph are defined as the sinks which absorb grains and 
play the role of the boundary to ensure that the non-equilibrium steady state is 
reached. 

Studying the properties of different types of complex graphs has attracted a lot of 
attention over the last couple of years. This is because the different types of complex 
networks are suitably represented by the complex graphs. Studying the properties 
of the associated graphs gives insight into the structural details, properties etc. of 
the related networks. There is a long list of real-world networks from diverse fields 
which are being looked into and studied by the network researchers which range 
from social to electronic to biological networks. A number of them are listed in 
Table 1.2. 

The nodes (vertices) and the links (edges) can be identified for every network. 
For example, living systems form a huge genetic network whose nodes are proteins 
and genes and the chemical interactions between them represents links. A biolog- 
ical network showing protein-protein interactions in Baker's Yeast [53] is shown in 
Fig.l.4. Complex networks occur in social science where nodes are individuals or 
organizations and the links are the social interactions or mutual friendships between 
them [54, 55]. Communication systems like the Internet [56] is a complex network 
of routers or autonomous systems linked by various physical or wireless links. Study 
of the Internet's topological structure is important for designing efficient routing 
protocols and modeling Internet traffic. Other much studied network is movie actor 
collaboration network [57] in which the nodes are the actors and two nodes have a 
common edge if the corresponding actor has acted in a movie together. Similarly a 
collaboration network [58] was studied where the nodes are scientists and two nodes 
are connected if the two scientists have written an article together. Another corn- 
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plex network studied is the citation network [59] where nodes are published articles 
and a directed link represents a reference to a previously published article. Citation 
networks are acyclic because papers can only cite other papers that have already 
been written, not those that have yet to be written. Besides this there are power 
grid network [57] where nodes are generators, transformers and substations and the 
links are high voltage transmission lines. 

The topological size of a graph is measured by the 'diameter' of the graph. The 
distance between two vertices on the graph is the number of edges on the shortest 
path connecting the two vertices. The diameter 7)(N) of a graph G is the maximum 
of all shortest paths. Therefore though a graph has no spatial size, the diameter 
acts as a measure of its topological size. 

The local correlations among the neighboring links are measured by the clustering 
co-efficient C(N). In real-world networks such correlations are observed to be more 
than the corresponding random graphs of same number of vertices and edges. For 
example, it is likely that A and C are friends if both of them are friends of B. If ni 
is the number of edges within the ki neighbors of i then the clustering co-efficient 
gi of the i-th vertex is n~/{k~(k~ - 1)/2}. Clustering co-efficient of the whole graph 
is average of gi over all vertices. 

The simplest of all types of complex graphs are the Random graphs introduced 
by ErdSs and R~nyi [60]. A random graph has N vertices and between every pair 
of vertices there exists an edge with probability p and the vertices remain uncon- 
nected with probability 1 - p. The degree distribution of such graphs for large N is 
Poissonian as: 

P(k)  = e -<k> (k>k/k! (1.21) 

A Small-World Network (SWN) has a very small diameter but large clustering 
coefficient: 

(D(N))  ~ logN and C(N) ~ 1. (1.22) 

It has been observed that most of the real-world networks have small diameters 
reflecting the efficiency of the networks as well as the high value of the clustering 
coefficient reflecting local correlations among the links., Watts and Strogatz showed 
that a regular network which has large diameter and large clustering coefficient 
crosses over to a small-world network on rewiring the edges with a 0+ probability 
[57, 61]. 

1.2 .1  S c a l e - f r e e  n e t w o r k s  ( S F N )  

The inhomogeneity and complex nature of the real-world networks is also measured 
by the degree distribution P(k).  It has been observed that unlike random graphs 
many real-world networks are highly inhomogeneous and their nodal degrees follow 
power law distributions: 

P(k)  ,'~ k -'Y. (1.23) 

World Wide Web [62] which is a network of webpages(nodes) and the hyper- 
links(links) among various pages and the internet network [56] of touters or au- 
tonomous systems are examples of SFNs. Due to the absence of a characteristic 
value for the degrees, these networks are called scale-free networks (SFN) and the 
exponent 7 varies between 2 and 3 for these real-world networks. 
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Figure 1.4: Baker's Yeast by Hawoong Jeong, Ref: ht tp: / /www.nd.edu/  net- 
works/gallery.htm, see [53]. 

1 . 2 . 2  B a r a b ~ s i - A l b e r t  m o d e l  

Barabs (BA) proposed a simple model for an evolving SFN that  has the 
following two essential criterion- 

i. A network grows from an initial set of m0 nodes with m < m0 links among 
them. Further, at every time step a new node is introduced and is randomly 
connected to m previous nodes. 

ii. Any of these m links of the new node introduced at time t connects a previous 
node i with an attachment probability ~ri(t) which is linearly proportional to 
the degree ki(t) of the ith node at, time t, 

~ A ( t )  ~ ki(t) (1.24) 

For the BA mode!7  = 3 [63]. 
The diameter ~D(N) of the BA graphs grow logarithmically as log N like small- 

world networks, whereas the clustering coefficient of the BA model decreases with 
the network size, following approximately a power law C(N) ~ N -~ which decays 
slower than the C(N) ~ N -1, observed for random graphs, is still different from the 
behavior of the small-world models, where C(N) is independent of N. 
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1.3 Fixed energy sandpile (FES) 

Many non-equilibrium systems show transitions between 'active' and 'absorbing' 
states: examples are directed percolation [64], the depinning of interfaces in quenched 
disorder [65] etc. Sandpile models in the Self-organized Criticality in infinitely large 
system sizes possess an infinite number of absorbing configurations. Under an ex- 
ternal drive of repeated particle inputs the system jumps from one absorbing con- 
figuration to another via avalanche like rearrangements. 

In Fixed Energy Sandpile [66, 67, 68] the sandpile model is defined on a closed 
system of size L with periodic boundary conditions along all independent directions. 

Here the rules for sandpile dynamics remain same but there is neither any external 
driving nor any boundary dissipation. As the system is closed, its total mass of N 
grains is conserved which is fixed by the initial condition and the mass density i.e., 
the number of grains per site ~ = NIL d is used as a tuning parameter, where d is the 
dimension of the lattice. If ~ is large enough, the system reaches a stationary state 
with sustained activity i.e. it is in the active phase. On the other hand for small 
values of r the system relaxes with probability one into a frozen configuration, i.e. 
it is in the absorbing phase. In between these two regimes there exists a critical 
point at (~ = ~c) separating an absorbing phase from an active phase. 

In the FES model the system initially starts with ~ L  d particles distributed among 
the L d sites yielding a distribution that  is spatially homogeneous and uncorrelated. 
The order parameter is the stationary average density of active sites pa, which 
equals zero for r < ~c, and follows a power law Pa ~ (~  - -  ~c) ~ for r > ~c. The 
correlation length ~ and relaxation time T both diverges as ( --, r their critical 
behavior is characterized by the exponents v• and vii , defined via ~ ~ Ir - r 
and ~- ~ Ir - r  -~1 respectively. The dynamical critical exponent is defined via 
T ~ ~z which implies z = vii/v• In BTW FES model the activity was found to 
show a step like behavior for increasing energies [69]. It has been found that  systems 
showing continuous absorbing state transitions in absence of a conservation law fall 
generically into the universality class of directed percolation [70, 71]. It has been 
claimed that  FES with stochastic dynamics belongs to a new universality class of 
absorbing phase transition in which the activity is coupled to a static conserved 
field [66]. Further it was found in [67] that  the Manna and BTW FES models 
shows critical exponents different from those of DP. The Manna FES in 2 - d was 
claimed to belong to the universality class of linear interface depinning [67] while 
1 - d Manna FES belong to a new universality class different from linear interface 
depinning and from that  of directed percolation [68]. BTW FES showed a violation 
of simple scaling and showed several anomalies associated to non ergodic effect in 
its dynamics [67]. FES was claimed to belong to a new universality class. 

1.4 PART II: Conduction in sedimentary rocks 

Rocks, in general, particularly sedimentary rocks e.g. sandstones, limestones etc., 
have a pore structure which is a highly branched and interconnected network. This 
connected pore space plays a very important role in transport properties like conduc- 
tivity and permeability in rocks, where the brine solution filling up the pore-space 
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is responsible for transport. Thus the study of the pore structure of sedimentary 
rocks is important in problems such as oil-exploration, ground water flow, spread 
of pollutants etc. An interesting property of these rocks is that they appear not to 
have a finite percolation threshold [72]. When the pore space of these rock materials 
is saturated with salt water, they become conducting even when the porosity is less 
than one percent. 

Several empirical laws reflect this property. Archie's law [73] connects the electri- 
cal conductivity of brine filled rocks a(r and the porosity r i.e., the volume fraction 
of the void space in the following way: 

a(r  = a r  z (1.25) 

Here, aw is the conductivity of water, a ~ 1 is an empirical parameter and z ~ 2 
is a non-universal exponent that  depends on characteristics of the rock structure. 
This law suggests that  a finite conductivity persists even in the limit of r ~ 0 and 
therefore the percolation threshold is zero. 

Another empirical law known as the Kozeny equation [74] relates the permeability 
K(r  of the rock structure to the porosity r through a similar power law, 

K(r =cCz'/s o (1.26) 
where, z' ~ 3, So is the specific surface area and c is an empirical constant. This 
equation also suggests that  the pore space is connected in the r --- 0 limit. The 
permeability of rock structure is defined as the velocity of the fluid per unit pressure 
gradient times the viscosity of the fluid. This is known as Darcy's law [75, 76]. 

1.4.1 Diagenesis 
Granular materials undergo a restructuring process in nature over a geological time 
scale from an unconsolidated, high porosity packing to a more consolidated less 
porous structures. This is known as diagenesis. Formation of sedimentary rocks 
start  with sedimentation of sand grains under water or in air [77, 78, 79] giving an 
highly porous ~ 4 0 -  50% sediment. Sedimentation is followed by compaction under 
pressure and diagenesis [80, 77] and finally a consolidated sandstone is formed. 

The final characteristic of the pore network depends strongly on the diagenetic 
process. Depending on the nature of the pore-filling fluids, deposition of salts may 
take place as crystallites in the crevices or along the pore walls by a process called 
"cementation". Otherwise, portions of the existing solid structure may get eroded 
or dissolved out in a "dissolution" process. The former decreases the porosity of 
the rock while the latter increases porosity. The two processes may take place 
simultaneously. The details of the chemical nature of the solid and pore filling fluid 
determines whether diagenesis leads finally to a stable structure, or to a continuously 
developing structure eventually giving rise to caverns of macroscopic size. 

Sahimi had classified the theoretical studies of modeling diagenesis in two ways 
[79]. The approach of "chemical modeling" deals with reaction kinetics and mass 
transfer ignoring the morphology of pore space. The second approach is "geometrical 
modeling" which deals with the geometrical descriptions of initial unconsolidated 
pore space which evolves under simple rules leading to reduction of porosity but 
maintaining the connectivity [77]. 
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Wong et al. [81] in 1984 proposed the bond shrinkage model where they consider 
a random resistor network on a simple cubic lattice. Each bond of the lattice rep- 
resents a fluid filled cylindrical tube of uniform radius. By random bond shrinkage 
mechanism, a bond of the network is randomly selected and its radius is reduced by 
a constant factor. This mechanism will simultaneously reduce the porosity and the 
conductivity of the network. The model maintains the network connectivity even in 
the limit of r ~ 0 and reproduces Archie's law and the Kozeny equation. 

Roberts and Schwartz [82] in 1985 proposed a geometrical model for diagenesis 
in sedimentary rocks. They used Bernal distribution i.e. the coordinates of dense 
random identical spheres of .equal radii for the location of the particle centers. The 
spheres are allowed to expand simultaneously which reduces the porosity. The poros- 
ity and the resistivity of the material are determined as a function of the radius. 
This model give rise to a percolating threshold of r ~ 3.5%. 

Tarafdar and Roy in 1998 [83] simulated a porous rock structure by ballistic 
deposition of grains of  two different shapes (1 x 1 x 1 and 2 • 1 x 1). These 
grains are dropped on a cubic lattice with certain probability. On such modeled 
porous structure they calculated the electrical conductivity using a parallel resistor 
network and permeability using the Kozeny relation. They reported a transition in 
the linearity of Kozeny relation at a porosity value of about 25%. But this paper 
does not address the problem of diagenesis. 
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Chapter 2 

Precise toppling balance, 
quenched disorder, and 
universality for sandpiles 

2.1 I n t r o d u c t i o n  

Accurate determination of the critical exponents and thereby precise distinction of 
critical behaviors among the different universality classes are always regarded as 
very important tasks in the field of critical phenomena since this analysis helps 
in understanding as well as identification of the crucial factors that determine the 
critical behaviors. This problem however is still open in the phenomenon of Self- 
organized criticality in spite of extensive research over last several years. More 
precisely, in the sandpile model of SOC the question if the two very important 
models namely the deterministic model by Bak, Tang and Wiesenfeld [8, 22] and 
the stochastic Manna sandpile [25] belong to the same universality class or not has 
not been fully settled yet. 

In spite of extensive efforts over last several years it has been found that BTW 
model shows scaling anomalies. Numerical estimate of the exponents have yielded 
scattered values, for example, estimate of the exponent T8 for ASM model ranges 
from 1.2 [41] to 1.27 [42] and 1.29 [43]' It has been shown recently that the ASM 
obey a multi-scaling behavior [26, 29]. On the other hand the stochastic Manna 
sandpile model is believed to be better behaved and there is good agreement of 
numerical values of its exponents determined by different investigations. 

A number of works [25, 42, 45, 46] claimed that they belong to the same univer- 
sality class, whereas a number of other papers [27, 28, 43, 44, 47, 48] argued in favor 
of different universality class. 
�9 Real space renormalization group calculation [45, 46] suggested that different sand- 
pile models like the BTW and the Manna model belong to the same universality 
class. Then universality was found between the discrete BTW model and the con- 
tinuous Zhang model in the dynamical renormalization group calculations [49, 50]. 
�9 Early stage large scale numerical simulation of the Manna and BTW models show 
that the avalanche distributions are described by the same power law exponents and 
obey the same scaling [25]. 
�9 Later Ben-Hur and Biham [47] analyzed the scaling of conditional expectation val- 
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Figure 2.1: (a) Random grain flow distribution along the bonds of a 3 x 3 square 
lattice for the undirected model, and (b) the corresponding toppling matrix is shown. 

ues [51] of various quantities and found significant differences in the exponents tbr 
the two models and predicted that Manna model belongs to a different universality 
class from that of BTW model. This method was later applied to the Zhang model 
which was declared non-universal [48]. 
�9 The moment analysis of the size distribution of the BTW and Manna sandpile 
model led Chessa et. al. [42] to the conclusion that both models are characterized 
by the same scaling exponents and thus belong to the same universality class. 
..Liibeck showed that the moment behavior of both the BTW and the Manna model 
differ significantly [27]. 

To summarize, the status of the debating issue if BTW and Manna sandpile 
models belong to the same universality class or not is the following. Though it was 
possible to calculate several quantities analytically in both the models, exact de- 
termination of the critical exponents characterizing the avalanche size distributions 
have not been possible yet. On the other hand it has been realised that BTW model 
is very difficult to tackle numerically. It refuses to obey the finite size scaling hy- 
pothesis mainly in two ways: (i) the slope of the log Prob(s, L) vs. log s plot shows 
a systematic variation with the system size L in the range of small to intermediate 
avalanche size regime and also (ii) the tail of the distribution corresponding to the 
large avalanches which see the finiteness of the system falls increasingly slowly with 
increasing the system size. As a result of these two factors, the avalanche size distri- 
bution data for the BTW sandpile refuses to scale for the different system sizes. For 
the stochastic Manna sandpile the situation is much more well behaved. Finite size 
scaling works very well in this case and the critical exponents have been estimated 
with reasonably good accuracies. 

It may be observed that all these efforts devoted to the issue if BTW and Manna 
sandpile models belong to the same universality or not are numerical. No theoretical 
argument have been put forward to understand the difference or similarity if any. It 
may also be observed that not even a single key factor has been possible to identify 
which may control the two possibly different behaviors. 

In two recent papers [84, 85], we have been able to identify a simple crucial factor 
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Figure 2.2: (a) Random grain flow distribution along the bonds of a 3 • 3 
lattice for the directed model, and (b) the corresponding toppling matrix is 

square 
shown. 

that controls the two different behavior. 
In this chapter we describe our works in [84, 85] where.a single sandpile model 

with quenched random toppling matrices captures the crucial features of the differ- 
ent sandpile models. With the associated symmetric toppling matrices avalanche 
statistics falls in the multiscaling BTW universality class. In the asymmetric case 
the simple scaling of the Manna model is observed. The presence or absence of a 
precise toppling balance between the amount of sand released by a toppling site and 
the total quantity of sand the same site receives when all its neighbors topple once, 
determines the appropriate universality class. In w we describe our model, in w 
we discuss the precise toppling balance condition, in w we discuss the numerical 
results for our model, in w we discuss how the kinetic self avoiding trail is used 
to maintain the precise toppling balance and finally we conclude in w 

2.2 T h e  m o d e l  

The grain flow field in the BTW model is a constant and has no variation along 
the lattice bonds. This means that across an arbitrary bond if the sand column at 
either of its end site topples, only one grain flows through this bond to the other 
end. 

In our present model we assumed a random field for the grain flow distribution 
along the bonds. More specifically the number of grains that flows through a bond 
when there is a toppling at one end is a quenched random variable. Non-zero values 
of these flow rates are assigned initially and they remain invariant throughout the 
sandpile dynamics. In terms of the toppling matrices --Aij grains flow to the site 
j when there is a toppling at the site i. Before the sandpile is constructed the 
elements of the A matrix are randomly assigned negative integers -I,-2, ..,-m, 
m being a positive integer parameter and A~j = 0 for li -Jl > i. The diagonal 
elements A~i are chosen to be equal to - ~-~jr A~j. Thus the different elements of A 
matrix values remain fixed for the full samples of avalanches for one realization. As 
usual the avalanche statistics is collected and averaged for many such independent 
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Figure 2.3: The out degree Hi = -~'~j#i AiJ is pictorially represented by the four 
outgoing arrows and associated elements of the toppling matrix A whereas the in 
degree H i = --~j#iA~i is represented by the four incoming arrows with associated 
matrix elements. 

realizations. 
Two different sandpile models have been studied depending on the detailed type 

of the quenched randomness on a square lattice. In the first type which we call 
the 'undirected quenched sandpile model' each bond of a square lattice is assigned 
only one random integer which denotes the number of grain flow in either direction 
during toppling. The corresponding TM in this case is symmetric i.e. Aij = Aji. 
In Fig.2.1(a) we show the random but symmetric grain flow along the bonds of a 
3 • 3 square lattice for the undirected model and the corresponding toppling matrix 
is shown in Fig.2.1(b). On the other hand for the directed model both Aij and 
Aji are assigned independently drawn random integers [84]. The corresponding TM 
in this case is asymmetric. In Fig.2.2(a) we show the asymmetric grain flow along 
the bonds of a 3 • 3 square lattice for the directed model and the corresponding 
toppling matrix is shown in Fig.2.2(b). Irrespective of whether A is symmetric 
or not, both the directed and undirected model are Abelian and therefore possess 
properties similar to the stationary state, recurrent configurations, etc. of the ASM 
[23]. 

2.3 Precise toppling balance 

At any site of the lattice we defined the threshold height for stability of the sand 
column at that site as Hi =/kii = -~-]j#i AiJ" Thus Hi denotes the total number 
of grain flowing out of the site i during its toppling and we also called this as 
the out degree of the site i (Fig.2.3) . Further we also defined a quantity called 
H~ = -~j#i/kji which denotes the total number of grains received by the site i when 
its every neighbor j topple for once. In a similar way we call H i as the in degree of 
the site i (Fig.2.3). We argue that at all sites except for those on the boundary if 
the condition of precise balance: 

Hi=H~ (2.1) 
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Figure 2.4: Multiply toppled sites within the avalanches are shown by circles of 
different colors: l(black), 2(red), 3(blue), 4(green), 5(magenta) and 6(orange) for 
the (a) undirected model and (b) directed model. 

is satisfied then the model belongs to the BTW universality otherwise it belongs to 
the Manna universality class. 

It is to be noticed that in case of undirected model the precise toppling balance 
is maintained at all sites except at the boundary sites, on the other hand for the 
directed model this precise balance is absent in general. 

2.4 Results  and analysis 

Different properties of the two models are studied and compared with BTW and 
Manna models in the three following ways: 

2 .4 .1  A v a l a n c h e  s t r u c t u r e s  

The structure of avalanches in the undirected model are found to be very similar to 
those in the BTW model. The validity of the precise balance equation (2.1) ensures 
that there cannot be any hole (a set of sites which have not toppled at all) within 
the avalanches of this model similar to the BTW sandpile avalanches. For example, 
a single untoppled site can not be fully surrounded by toppled sites. Indeed, in 
the undirected model the equality Hi = H~ is strictly maintained at all sites except 
at the boundary, which implies that a site must topple irrespective of its height, if 
all its neighbors topple once. Moreover, similar to the BTW sandpile avalanches 
again, the n-th toppling zone (the set of sites which have toppled n times) is a set of 
sites connected by nearest neighbors and is completely surrounded by the (n - l)- 
th toppling zone. As n increases the corresponding toppling zone comes closer to 
the origin. The origin contains the maximally toppled zone and is situated at the 
boundary of this zone. All these properties are very similar to the BTW sandpile 
avalanches. 
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Figure 2.5: For the undirected model (a) the avalanche size distribution Prob(s, L) 
vs. s for system sizes L = 512, 1024 and 2048, (b) shows an at tempt of scaling with 
r(L) = 1.13, 1.145 and 1.15 for L = 512, 1024 and 2048 respectively. Similarly for 
the directed model (c) shows the avalanche size distribution data for L = 1024, 2048 
and 4096 and (d) shows a scaling of Prob(s, L)sl'28"vs. s / L  2"7~. 

All these are not true anymore for directed model. In. this case the avalanches can 
have holes without any restriction of size. Sites which have toppled same number 
of n times do no t  necessarily form a connected set of sites, actually these sites are 
scattered throughout the avalanche and form disconnected small clusters. Indeed, 
in the directed model, Hi ~fi H~ in general and a site with Hi > H i does not topple 
even if all its neighbors topple once. This creates a single site hole in the avalanche. 
On the other hand, if a site i has out degree sufficiently smaller than its in degree, 
it may topple for the second time even if none of its neighbors have toppled for the 
second time. Thus, all these properties of the avalanche structures of the directed 
quenched sandpile are very similar to avalanche structures in the Manna model. 

The compactness and uniformity of waves in the undirected model leads us to 
expect for them and for the resulting avalanches a structure similar to that  of the 
BTW model (Fig.2.4(a)). The non-uniformity introduced by disorder should not 
be relevant at large scales when one counts toppling events. The situation is quite 
different for the directed model: the structures of waves and of avalanches in this 
case (Fig.2.4(b)) look in fact similar to those of the Manna model [32] where the 
numbers of grains transmitted upon in the two directions of a given bond are differ- 
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Figure 2.6: (a) Plot of a(q) vs. q for the BTW (solid line), undirected (dotted line) 
models. (b) Comparison of da(q)/dq vs. q plots between BTW (solid line) and 
undirected (dotted line) models. (c) Plot of a(q) vs. q for the Manna (solid line), 
directed (dotted line) models and (d) comparison of da(q)/dq vs. q plots between 
Manna (solid line) and directed (dotted line) models. 

ent in general, and this imbalance is maintained dynamically due to the stochastic 
distribution of sand grains. 

2.4.2 Avalanche size distributions and multi-fractal analysis 

In the BTW model, the probability distribution Prob(s, L) of the total number of 
topplings, s, in an avalanche has been found recently to obey a multi-scaling ansatz 
[26, 29]. On the other hand, it is pretty well established [27] by now that in the 
Manna stochastic sandpile this distribution obeys simple FSS as: 

"r 8 
Prob(s,L) ,,~ s-  f(~--~), (2.2) 

where the scaling function f(x) ~ constant in the limit of x --+ 0 and f(x) ap- 
proaches zero very fast for x >>  1. The exponent T and the dimension D fully 
characterize the scaling of Prob in this case. One immediate way to check validity 
of Eqn. (2.2) is to attempt a data collapse by plotting s~Prob vs .  s /L D with trial 
values of the exponents. We collected extensive data for both our models (m = 4) 
for L = 128, 256, 512, 1024, 2048 and 4096, namely 50 million avalanches in 500 
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Figure 2.7: (a) The deviations XBTw, undi; (dashed) and XBTW, dire c (dot-dashed) are 
plotted with 40 times magnification. (b) Similar Xia~,d i rec  and XM~,~a,~,~dir are 
plotted with same magnifications. 

independent configurations for L = 128 down to ~ 1.1 million avalanches for 9 con- 
figurations for L = 4096 skipping first ~ 4L 2 avalanches to reach the steady state. 
For the undirected model, similar to the BTW model, the collapse does not work 
for a single set of r and D and for all values of s and L (Fig.2.5 (a) & (b)). For the 
directed case collapse works very nicely giving r ~ 1.28 and D ~ 2.75 (Fig.2.5 (c) 
& (d)), close to the most reliable estimates of the Manna sandpile exponents [27]. 

A more reliable and  quantitative check of the validity, or violation, of FSS, is 
based on the evaluation of the various moments of Prob [26, 27, 29]. The q-th 
moment is defined as (s q) = f sqProb(s, L)ds. Assuming that  FSS holds, it is easy 
to show that  (sq) ,.., L a(q) with the moment exponent given by a(q) = D(q - T + 1) 
for q > T- -  1 and a(q) = 0 for 0 < q < r -  1. In the case of multi-scaling a 
should have a nonlinear dependence on q. A comparison of a(q) is also a key to 
establish if different sandpile models belong to the same universality class, or not. 
The value of a(q) is determined from the slope of the plot of log(sq(L)) vs. logL 
for L = 1024, 2048 and 4096 with an error ~ 0.01 and for 251 values of q between 0 
and 5 (Fig.2.6). The derivative of a is determined by the finite difference method. 
Slow but monotonic increase of do'(q)/dq with q clearly indicates the multi-scaling 
in BTW as well as in undirected models (Fig.2.6(a) & (b)) where as a saturation of 
da(q)/dq indicates a FSS in Manna and in directed models (Fig.2.6(c) & (d)). 

To measure the deviation quantitatively we define a quantity 

Xa,b = P . l ( d a ( q ) / d q ) a  - ( d a ( q ) / d q ) b l  

- ~ 7  (da(q)/dq)b" 
(2.3) 
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Figure 2.8: Autocorrelation function of the wave time series of the undirected and 
the directed (inset) sandpile in the inset for L=128, 256 and 512. 

It is observed that after some initial fluctuations ZBTW, undi r has a maximum value 
0.33% within q=2 and 5 whereas XBTW, dire c gradually increases to 5.5 % at q =5 
(Fig.2.7(a)). This analysis implies that undirected model is almost negligibly dif- 
ferent from the BTW model in the da(q)/dq vs. q plot where as the deviation 
of directed model from BTW model is much larger and gradually increases with 
q. Similarly XManna,dire c is limited within 0.91% whereas XManna,undi r gradually 
increases to 6.5 % at q =5 (Fig.2.7(b)), which also implies that directed model is 
very similar to the Manna model but much different from the BTW model. The 
above described results concerning X for the various couples of models are altogether 
strongly supporting the conclusion that while the directed model belongs most likely 
to the Manna universality class, the undirected one has the multi-scaling features 
known to be peculiar' of the standard BTW sandpile. 

2 . 4 . 3  W a v e  a n a l y s i s  

By decomposing a large sequence of successive avalanches into waves in the undi- 
rected and directed cases, we obtained global wave size distributions which obey 
FSS with the exponents expected for the BTW model [31] and the Manna model 
[32], respectively. For the BTW sandpile globally sampled waves have a size distri- 
bution with a form as in Eq. (1.16), with T~ = 1 and Dw = 2. In the case of the 
Manna stochastic sandpile, waves can not be defined as in the deterministic Abelian 
sandpiles, but a wave-like decomposition was proposed in Ref. [32]. The global size 
distribution of the corresponding waves obeys FSS with the same exponents ob- 
tained for the avalanche distribution [32]. As already remarked above, waves can be 
consistently defined [22] in the same way for each quenched disorder realization of 
our directed and undirected models. The global wave scalings obtained here further 
support the expectation that they fall in the Manna and BTW universality classes, 
respectively. 

Further insight into the different behaviors of the directed and undirected mod- 
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Figure 2.9: If A values of an incoming bond as well as an outgoing bond of an 
arbitrary site i are increased by the same amount 5, the precise balance Hi = H~ 
remains unaltered at the site i. 

els can be obtained by analyzing the wave time series {sl, s2, s3, ..} of the sizes of 
successive waves as in ref. [32]. In Fig.2.8 we plot the autocorrelation function: 

C(t ,L)  = (Sk+tSk)L- (Sk)L 2 (2.4) 
8 2 ( k)L 

where the expectation values refer to samples with different L and include quenched 
disorder averaging. The plots in Fig.2.8 are fully consistent with similar ones for 
the BTW and Manna sandpiles [32]. While in the directed case the autocorrelation 
function is essentially zero as soon as t > 0, in the undirected model it grows 
steadily with L, and approximately scales as C(t, L) ~,, t -~c~(t /L D~ with % ~ 0.35 
and Dc ~ 1. These exponents should be compared to 0.40 and 1.02, respectively, 
as determined for the BTW model [32]. This long range autocorrelation must be 
a consequence of the coherent and uniform spatial structure of each wave in the 
undirected case. In the directed model correlations are destroyed by the much more 
irregular pat tern of topplings, with inhomogeneities and holes, in each wave. The 
correlation patterns show marked self-averaging, being reproducible on the basis of 
very few disorder realizations. 

2.4.4 Summary of [84] 
The local out / in  degree balance Hi = H~ at all sites in the undirected model is 
essential for the BTW multi-scaling behavior to prevail. Numerically, with quenched 
disorder realization as described above., we find that  the density of unbalanced sites 
with Hi ~ H~ in the directed model is around 0.88 and those of the sites with 
H~ > Hi and H~ < Hi are equal to 0.44. Now we ask if there is any critical density 
of unbalanced sites which demarcates the behaviors of the undirected and directed 
models. To study this we first generated an asymmetric TM in which the fraction 
of the bonds with unequal A values is found to be ~ 0.75. We tuned this fraction, 
and thus the density of unbalanced sites, by randomly selecting these bonds and 
making their A values equal by assigning a random integer number between - 1  and 
- m .  We find tha t  even the presence of as low as 5 percent bonds with unequal A 
values is sufficient to destroy the multi-scaling and to ensure FSS as in the directed 
model. Thus, as soon as precise toppling balance is broken, FSS holds, and the 
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Figure 2.10: A KSAT loop on the square lattice starting from the encircled site and 
coming back to the same site after 90 steps. 

universality class turns into that of the Manna sandpile. The transition to Manna 
behavior does not require a nonzero threshold density of unbalanced sites. Thus, for 
the undirected model the symmetry of precise toppling balance is a crucial requisite 
for the multi-scaling to hold. This requisite is of course satisfied also by the ordinary 
BTW sandpile. 

To conclude, we studied sandpile models with quenched disorder where the ele- 
ments of the TM are randomly assigned. With asymmetric TM the precise toppling 
balance between in- and out-degrees at each site is not maintained. This imbalance 
suppresses the wave correlations leading to the BTW-like multi-scaling behavior of 
the avalanche size distribution and results a FSS regime in the universality class of 
the Manna stochastic sandpile. Thus, a symmetry mechanism underlies the puzzling 
difference between BTW and Manna scalings. 

2.5 Asymmetric TM that maintains precise H i  = 

balance 

Can there be an asymmetric toppling matrix A whose elements are selected in 
such a way that the precise balance Hi = H~ is maintained at all sites except on the 
boundary? We investigated this question in [84] and found that indeed it is possible. 
This is done in the following way. 

We start with an empty periodic L ,• L lattice with the corresponding TM A 
whose all elements are initially zero. Therefore Hi = H~ = 0 is true at all sites 
initially. The asymmetric A matrix will be generated gradually step by step. We 
start  from an arbitrarily selected site i. Let the neighbors of the site i be denoted 
by 1, 2, 3 and 4. We first observe that  if one increases the A value of any one of the 
four outgoing bonds, say (i3) by an amount 5, the bond (i3) becomes asymmetric 
and it increases Hi by the same amount. Similarly if we increase the A value of 
an arbitrary incoming bond to the site i, say (2i) by 5 again, the bond (2i) also 
becomes asymmetric and H~ increases by an amount 5. Therefore as a result of 
both the operations the precise balance of H~ = H~ is strictly maintained at the site 
i, as shown in Fig.2.9. Next, following the outgoing bond (i3) we go to the site 3 and 
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Figure 2.11: (a) Scaling of KSAT loop length distribution for system sizes L = 
513, 1025, and 2049. The estimated exponents are d I ~ 1.905 and ~ ~ 2.237. (b) 
The mean-square end-to-end distance of KSATs after n steps grows as n 2~ with 
u ~ 0.530. 

increase the A value of any of the outgoing bond of the site 3 by the same amount 
~. This ensures that Hi - H~ is maintained at the site 3. In this way a series of 
such bond asymmetrizations can be done randomly by starting from any arbitrary 
site i, selecting randomly an arbitrary outgoing bond (i j), increasing/kij by ~, going 
to the site j, selecting an arbitrary outgoing bond (jk) (5 (ji)) and increasing Ajk 
also by the same amount ~, then going to the site k and so on. The path obviously 
cannot visit a bond of the lattice more than once and the final point to stop must be 
the starting point. Such a path can intersect itself but always one of the outgoing 
bonds which has not been asymmetrized yet is selected randomly. Since at each 
site on the path the /k values of either a single or a double pair of incoming and 
outgoing bonds have been increased by the same amount ~ the balance of Hi = H~ 
is maintained at all sites on the path. Such a random closed path is the path of a 
special type of walker and we call them as 'Kinetic self-avoiding trails' as described 
below. 

2.5.1 Kinetic self-avoiding trail (KSAT) 

A self-avoiding trail is a random walk .which does not visit one bond of the lattice 
more than once [86, 87]. A random configuration of self-avoiding trail is generated 
by growing a random walk which terminates when a bond is visited more than once. 
We studied kinetic self-avoiding trail (KSAT) which is executed with a little more 
intelligence [85]. At each site, to make a step, the walker first finds out the subset 
of bonds which has not been visited yet and then steps randomly along any one of 
these bonds with equal probability. Such a walk can also terminate only when it 
visits the origin for the third time as shown in Fig.2.10. 

A similar definition of kinetic growth walk or growing self-avoiding walks have 
been studied in the literature and it is argued that very long such walks behave in 
the same way as ordinary self-avoiding walks [88, 89, 90]. 
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Figure 2.12: (a) Random grain flow distribution along the bonds of a 4 • 4 square 
lattice for the quenched model generated by KSATs, and (b) the corresponding 
toppling matrix is shown. 

KSATs are found to have very interesting and non-trivial statistics. For example 
the probability distribution that  a KSAT returns to the origin for the first time after 
n steps has a scaling form like: 

D(n) ,~ L-~Q(n/L ds) (2.5) 

where the scaling function ~(x) ,,~ x -s as x --+ 0 such that  7 - - /~ /d /  and ~(x) --* 
decreases to zero very fast when x --, 1. We estimated d / ~  1.905,/~ ~ 2.237 which 
give 7 ~ 1.174 (Fig.2.11(a)). The cut-off exponent d/ is also recognized as the 
fractal dimension of the KSATs since the number of steps on the walks whose sizes 
are of the order of L varies a s  Ldf. One can also measure the value of d/direct ly.  
The mean square end-to-end distance (R2(n)) of the walker from the origin after n 
steps varies as n 2v, where v = l / d / .  Simulation of walks of lengths up to a million 
steps on a lattice of size L = 4097 gives ~ ~ 0.530 so that  d / ~  1.886 (Fig.2.11(b)). 
Therefore we conclude a mean value of d / ~  1.895. 

KSATs are therefore used to asymmetrize the TM. We start with a TM whose 
all elements are initially zero corresponding to a periodic L • L lattice. The walker 
starts from an arbitrarily selected site, executes a KSAT which finally stops when 
it comes back to the origin for the first time. The A values of every outgoing bond 
visited from each site are then increased by ~ which is selected as a random integer 
number between 1 and 2. A number of such KSAT loops are then generated one 
by one starting from arbitrarily selected sites and with randomly selected ~ values. 
The process stops only when all bonds are asymmetrized at least once. The periodic 
boundary condition is then lifted. In Fig.2.12(a) we show the asymmetric grain flow 
along the bonds of a 4 x 4 square lattice for the quenched model generated by 
KSATs and the corresponding TM is shown in Fig.2.12(b). The TM so generated is 
asymmetric in ~ 92.5 % bonds but maintains the precise balance of Hi = H~ strictly 
at all sites except on the boundary. The lattice is now ready to study the sandpile 
model where the threshold height at each site is denoted by Hi. Such a system has 
a large fluctuation of threshold heights and their average increases by increasing the 
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Figure 2.13: Multiply toppled sites within the avalanches for the quenched model 
generated by KSATs are shown by circles of different colors: l(black), 2(red), 
3(blue), 4(green), 5(magenta) and 6(orange). 

system sizes. 
We studied three aspects of the sandpile model on the quenched substrate gener- 

ated by KSATs which are: (i) the inner struct.ure of the avalanches (ii) the avalanche 
statistics and the (iii) wave size distributions. We observe very close similarities of 
our model with BTW model in ail three aspects as reported below. 

2.5.2 Avalanche picture 

We find that the waves in case of the quenched model generated by KSATs like in 
the BTW model axe compact having no holes. The set of sites toppling the same 
number of times form a connected toppling, zone. The avalanche is characterized 
by the formation of multiply toppled zones with an inner hierarchy in the number 
of topplings. The n-th toppling zone is completely surrounded by the (n - l)-th 
toppling zone with the origin situated within the maximally toppled zone. A typical 
picture of the multiply toppled zone within an avalanche for the quenched model 
generated by KSATs is shown in Fig.2.13. 

2.5.3 Results  and analysis 

Like any ordinary sandpile model, the dynamics starts from an arbitrary stable 
distribution of sand heights and then grains are added to the system one by one. 
The system eventually reaches the stationary state when the average height per 
site fluctuates around a mean value but does not grow any further. The size of an 
avalanche is measured by the total number of topplings s. 
The finite size scaling behavior of the probability distribution Prob(s, L) of avalanche 
sizes has the following general form: 

Prob(s, L ) ~  L-~9~(-~),  (2.6) 
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Figure 2.14: Data for the avalanche size distribution for the quenched model gener- 
ated by KSATs. (a) Plot of Prob(s,L) vs. s for L =128, 256 and 512 (b) a scaling 
at tempt  of Prob(s, L)L 2A vs. s / L  2 with the same system sizes. (c) Comparison of 
the moment exponents a(q) vs. q and (d) da(q)/dq vs. q for the quenched model 
generated by KSATs (dotted line) and for the BTW model (solid line). 

where the scaling function 9V(x) :,, x -~ in the limit of x ~ 0 and 9V(x) approaches 
zero very fast when x ---* 1 .  It is now known that  BTW model does not follow 
this FSS form but has a multi-scaling behavior [26, 29] where as the Manna model 
follows this FSS behavior quite accurately [27]. 

For the quenched model generated by KSATs it is observed that  the collapse does 
not work for a single set of # and D and for all values of s and L. This is a similar 
situation as found in the BTW sandpile model and also in the case of undirected 
quenched model [84]. For example in Fig.2.14(a & b) we have tried an unsuccessful 
attempt for a data collapse as: Prob(s, L)L 2"4 vs. sL -2 for L = 128, 256 and 512. 
Evidently the three curves separate out from one another beyond s/L 2 ~ i. Even 
for smaller s values within 1 < s < L 2 their slopes differ slightly but systematically 
as 1.132, 1.135 and 1.144 for L = 128, 256 and 512 respectively, very similar to the 
BTW model behavior. 

Further to check that the quenched model generated by KSATs indeed behaves 
like the multi-scaling BTW model the various moments of Prob are evaluated [26, 
27, 29]. The q-th moment of the avalanche size distribution is defined as (s q) = 
~sqProb(s, L). Assuming that FSS holds for the whole accessible range of avalanche 
sizes, it is known that  (s q} ~,, L u(q) where a(q) = D(q - T + 1) for q > W -- 1 and 
o'(q) = 0 for 0 < q < r -  1. Estimates of a(q) are obtained from the slopes of the plot 
of log(sq(L)) with log L for L = 128, 256 and 512 and for 251 equally spaced q values 
ranging from 0 to 5. We compared the plot of o(q) vs. q for the quenched model 
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Figure 2.15: This flow chart shows that the precise balance Hi = H~ or absence of 
it determines the universality classes of different sandpile models. 

generated by KSATs with a similar plot for the BTW model calculated for the same 
system sizes, and the agreement is found to be very good, within 2% (Fig.2.14(c)). 
For both the models or(q) shows marked deviation from linearity. To analyze this 
non-linearity in more detail it is an usual practice to calculate da(q)/dq which takes 
the constant value D for large q had the FSS been valid. In contrast, in our present 
case we find in Fig.2.14(d) that da(q)/dq increases steadily with q for q > 1 and this 
plot coincides within the same accuracy with a similar plot for the BTW model. 

The autocorrelation function of the wave time series (sl, 82, s3,...) of successive 
(8klL]/[(Skl L (8k12L] where the (..) waves [32] is defined as C ( t , L )  = [(Sk+tSk)L- 9. 2 _ 

refers quenched disorder averaging. This long range autocorrelation is the conse- 
quence of the coherent and uniform spatial structure of each wave. For the quenched 
model generated by KSATs, C(t, L) is found to grow steadily with L. It scales as 
C(t,  L) ~ t - r c G ( t / L  De) with same exponents as undirected model with Tc ~ 0.35 
and Dc ~ 1. These exponents should be compared''to 0.40 and 1.02, respectively, as 
determined for the BTW model [32]. 

2.6 C onc l us i on  

We studied sandpile models with quenched disorder where the elements of the TM 
are randomly assigned. With symmetric TM the equality between the outflow (H~) 
of grains during toppling of site i and the total number of grains flowing to the 
site i when all its neighbors topple once is always maintained at all sites except the 
boundary sites. With asymmetric TM the toppling balance Hi -- H~ may or may 
not be maintained. Using random kinetic self-avoiding trail loops on the square 
lattice we have generated an asymmetric toppling matrix maintaining the precise 
toppling balance condition between the outflow of grains during a single toppling 
at a site and the total number of grains flowing into the same site when all its 
neighbors topple for oncel We conclude, as displayed in a flow chart in Fig.2,15 that 
it is only the local flow balance or absence of it, irrespective of it being generated 
from a symmetric or asymmetric TM, that determines the universality class of the 
sandpile model. Thus if the local outflow or inflow balance of grain is maintained 
at all sites the  model shows BTW scaling behavior otherwise it will show Manna 
scaling behavior. 



C h a p t e r  3 

Sandpi le  m o d e l  on an o p t i m i z e d  
scale-free  graph on Euc l idean  
space  

3.1 In troduct ion  

In the last chapter we made a conjecture that given a sandpile model if the precise 
balance between the number of grains Hi distributed during a toppling at a lattice 
site i to its neighboring sites is equal to the number of grains H~ received by this 
site when all its neighbors topple for once is maintained, in other words if Eqn. 2.1 
Hi -- H~ is valid at all sites of the lattice except at those on the boundary, then the 
sandpile follows the multi-scaling critical behavior of the BTW sandpile model. 

In this chapter we discuss our recent work [91] where we studied the sandpile 
model on highly inhomogeneous scale-free graphs (SFG) which have attracted a lot 
of interests recently and which have been discussed briefly in sections 1.2 of the 
introductory chapter I. The motivation of this study is to acquire further support 
for the validity of our recent conjecture [84] mentioned ~bove. In our study the SFG 
is embedded in the Euclidean space, namely a square lattice of size L • L. The 
degree distribution of such a SFG varies over a wide range of values and follows a 
power law distribution. We study the BTW as well as the Manna sandpile models 
on such graphs and suitably define the toppling rules in such a way that equation 
(2.1) is valid. We observe that the critical behavior of this model when the graph 
is cost-optimized is very similar to that of the BTW model. In the following we 
define and describe the sandpile model on the SFG where Hi is equal to the degree 
ki of the vertex i and therefore is a strongly fluctuating quantity. In spite of that 
the equality Hi = H~ is attained by construction. The result is that  the sandpile 
model on the optimized SFG indeed behaves like the BTW model. We consider this 
result as a support to our conjecture mentioned above and expect that  it enhances 
the possibility that  this conjecture may indeed be true. 

In w we discuss networks on Euclidean space, in w we study sandpile model 
on a scale-free graph, in w we discuss the construction of optimized scale-free 
graph on Euclidean space, in w we study sandpile model on an optimized scale- 
free graph on Euclidean space and finally we conclude in w 
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3.2 N e t w o r k s  on E u c l i d e a n  space  

There are networks in which the nodes are geographically located in different posi- 
tions on a two-dimensional Euclidean space, for e.g., electrical networks, Internet, 
postal and even transport  networks etc. The edges of the graphs representing these 
networks carry non-uniform weights which in most cases are either equal or propor- 
tional to the Euclidean lengths of the links. In these networks a relevant question 
is how to optimize the total cost of the connections, e.g. electrical wires, Ethernet 
cables, or say travel distances of postal carriers [92]. 

On the other hand a detailed knowledge of link length distribution is also impor- 
tant  in the study of Internet's topological structure for designing efficient routing 
protocols and modeling Internet traffic. For example, Waxman model describes the 
Internet with exponentially decaying link length distribution: D(g) ~ exp(-e/g0)  
[93]. Yook et al. observed that  nodes of the router level network maps of North 
America are distributed on a fractal set and the link length distribution is inversely 
proportional to the link lengths [94]. 

It is suggested that  in the growing Internet, when a new node becomes a member 
of the network, two competing factors control the decision to which node of the 
already grown Internet the new node will be connected - the degree ki of the existing 
node i and in general the a th  power of the length g of the link connecting the new 
node and the node i. The preferential attachment probability for the ith node is 
therefore: 7ri c< kig ~. Recently in [95] it has been argued that  such a network 
is scale-free for all values of a > ac and t h e  degree distribution decays stretched 
exponentially for the other values of a but D(g) still maintains a power law. 

3.3 S a n d p i l e  m o d e l  on a sca le - free  g r a p h  

Recently, BTW sandpile model has been studied on a static model of SFG [96]. In 
contrast to the usual sandpile models there are no specific sinks at fixed positions 
in this study. Instead, during a toppling any grain can evaporate from the system 
from any arbitrary vertex with a small probability f .  The distribution of avalanche 
sizes (s) which do not dissipate (i.e., grains do not evaporate in these avalanches) 
is: 

ProD(s) ~ s -~ e x p ( - s / s c )  (3.1) 

where the cut-off of the avalanche size sc ~ 1 / f .  It is to be noted that  the cut-off 
size does not depend on the graph size .N but only on the dissipation rate. 

To claim that  a dynamical process active in a system is self-organized critical, 
it is important to ensure that  both long ranged spatial and temporal correlations 
dynamically evolve in this system. For the ordinary sandpiles grown on systems of 
spatial extension L this is verified in the following ways: (i) Though the avalanche 
size distribution has a power law distribution ProD(s) ~ s -~ for infinitely large 
systems, for the finite size systems the power law is valid for some intermediate 
range obeying the finite size scaling form in Eqn. 1.13 and this range increases 
with the system size as the cut-off of the avalanche size distribution increases as 
8c (L)  ~ L D. (ii) The average size of the avalanches increases with the system size 
L as ( s (L) )  ,,~ L ~ with u = 2 due to the diffusive motion of the sand grains as 
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Figure 3.1: Barabs scale-free graphs of N = L 2 vertices are generated on 
the square lattice of size L = 26 (left) and 64 (right) respectively and vertices are 
assigned random positions on the lattice. The graph on the left is un-optimized 
where as for the graph on the right the cost function C (the total wiring length) is 
minimized by a large number of trials as described in the text keeping the degree 
distribution intact. Large degree vertices are visible. 

explained in section 1.1.7. Non-zero values of T, v and D indicate that system has 
avalanches of all length scales and the process is indeed critical. 

If a sandpile is grown in a closed system (i.e.,'a system which has no sinks to 
absorb sand grains and also grains do not evaporate from this system) the sandpile 
eventually reaches a situation when an "infinite avalanche" emerges which contin- 
ues for ever and the system refuses to become stable again in a finite time. In this 
situation if a slow dissipation rate is introduced like every I/f topplings one grain 
is dissipated from any arbitrary site of the system, then the infinite avalanche dis- 
appears and the system indeed reaches a stationary state, but the avalanche sizes 
are no more of all length scales. This is because the large avalanches loose their 
strengths by dissipation of grains. 

For a network or a graph in general, there is no concept of physical space, only the 
connections by edges between the vertices. A small world graph has the diameter 
varying logarithmically with the number of vertices: T~(N) c< log N. Since scale- 
free graphs are also small world graphs, it is difficult to observe long ranged spatial 
correlations in sandpile model on SFGs. Therefore it is necessary to place the scale- 
free graphs on the Euclidean space and study the sandpile model on this graph so 
that long range spatial and temporal correlations become evident. 

3 . 3 . 1  S a n d p i l e  m o d e l  o n  a S F G  o n  t h e  s q u a r e  l a t t i c e  

We first construct a Barab~i-Albert  SFG of N = L 2 vertices [63, 97, 98]. The graph 
starts growing from an initial set of mo= (m + 1) vertices. Each of these vertices is 
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Figure 3.2: Scaling plot of the avalanche size distribution data of the sandpile models 
on the un-optimized BarabAsi, Albert scale-free graph on square lattice: (a) BTW 
model for system sizes: L = 256, 512 and 1024 gives the values of the scaling 
exponents D ~ 2,/3 ~ 3.2 and the avalanche size exponent TuBT_W~t ,~ 1.6 whereas 
(b) Manna model for system sizes: L = 512 and 1024 gives D ~ 2, /3 ,,~ 3.0 and 
TU M a n n a  ,~  1.5. n--Opt 

linked to all other m vertices forming a (m + 1)-clique. After that  new vertices are 
added to the graph one by one and each such new vertex is connected to rn randomly 
selected distinct vertices of the already grown graph with probability ri( t)  c< ki(t). 
This process stops when the graph size has grown to L 2 vertices. In our calculation 
we use m = 2, therefore our graph has L 2 vertices, 2L 2 - 3  edges among the vertices 
and a large number of loops. The vertices of the graph are then assigned randomly 
with uniform probability the sites of the square lattice. If two vertices are linked, 
the corresponding lattice sites are connected by straight lines. Thus we embed the 
BA SFG on the square lattice (Fig.3.1(left)). 

Clearly the degree distribution of such an Euclidean SFG is exactly the same as 
that  of the BA SFG. To study the sandpile model we assume that  each site (except 
for sites on the boundary) has a site dependent critical height Hi of stability which 
is equal to the degree ki of the vertex at that  site. Therefore when h~ _> Hi, the 
height of the sand column at site i is reduced to : 

h i - * h i - H i  (3.2) 

and in a deterministic toppling dynamics like BTW model, all the ki neighbors 
receive one grain each. The outlet of the system is at the boundary. Therefore every 
boundary site (except the corner sites) has the threshold heights Hi = ki + i. This 
implies that in a toppling at the boundary site one grain goes out of the system and 
never comes back. Similarly at the corner sites the threshold heights are Hi -- ki + 2. 
Such mechanism of outflow of grains through the boundary sites ensures that the 
sandpile dynamics on the Euclidean SFG must reach a stationary state. 

In this Euclidean SFG any site is connected to any other site with equal prob- 
ability and therefore the average edge length (gij} is large and of the order of the 
system size L (Fig.3.1(left)). In a toppling the grains therefore jump large distances 
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Figure 3.3: (a) The edge length distribution 7)(e) for a optimized SFG on a square 
lattice of size L = 32. (b) The average diameter 7)(N) of the optimized SFG on 
square lattices of size L = N 1/2 as a function of the number of vertices N. 

on the average. We first study a deterministic sandpile model on such a graph. In 
this sandpile model a grain jumps a distance around L in a toppling. Consequently, 
the spatial extent of all avalanches, small or big, are around L. 

3 . 3 . 2  A v a l a n c h e  s t a t i s t i c s  for s a n d p i l e  m o d e l  o n  a S F G  o n  
t h e  s q u a r e  l a t t i c e  

We first at tempted a finite size scaling following Eqn. 2.6 of the avalanche size 
distribution data of the BTW sandpile on un-optimized SFGs embedded on a square 
lattice by a data collapse of the plot of L~Prob v s .  8/L D with trial values of the 
exponents. In Fig,3.2(a) we show such plots for lattice sizes L = 256, 512 and 1024. 
The best collapse works for D ~ 2 and/3 ~ 3.2, giving T. s T W  -- j 3 / D  ,~ 1.6. Similar u n - o p t  - -  

slight deviation from 1.5 was also observed in [96] for the deterministic case. 
In addition the stochastic Manna sandpile is also studied on the un-optimized BA 

SFG on ~he square lattice for system sizes up to L=1024 again. We estimated D ~ 2 
and/3 ~ 3,0 giving _Manna lunop t ~ 1.5 (Fig.3.2(b)) for the stochastic Manna sandpile on 
the un-optimized BA SFG on a square lattice. We believe that  Tun-opt for both the 
BTW and Manna sandpiles on the un-optimized BA SFGs are indeed mean-field 
like and both the exponents should be actually 3/2. It is observed that  sites hardly 
topple multiply and the area a has a similar distribution. 

3.4 O p t i m i z e d  S F G  on E u c l i d e a n  space  

Recently a cost optimized scale-free graph on Euclidean space has been constructed 
[92] where the cost function, which is the total sum of the edge lengths is optimized 
keeping the nodal degree distribution exactly same as that of the original SFG. For 
such a construction one defines the cost function d(N) as the total wiring length 
in terms of the symmetric adjacency matrix A of size N • N (which has elements 
aij = 1 if there is an edge between the pair of vertices i and j and aij -- 0 otherwise) 
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Figure 3.4: Scaling plot of the avalanche size distribution data of the sandpile models 
on the optimized Barabs scale-free graph on square lattice for system sizes: 
L = 32, 64 and 128 give: (a) D ~ 2, ~ ~ 2.4 for the BTW model and (b) D ~ 2.62, 

~ 3.4 and TM~ nna ~ 1.3 for the Manna model. 

and the distance 6ij between vertices i and j as C(N) = Ei>jaij6ij. The optimization 
process is essentially a rewiring process maintaining the degree distribution intact. 

The optimization process starts with a BA SFG constructed on a square lattice 
as mentioned above. A pair of distinct edges of the SFG is chosen whose vertices 
are not linked otherwise. One end of each edge then opened and rewired suitably 
to another vertex of the quartet so that total sum of the rewired length is smaller. 
More precisely, the first vertex nl is randomly selected from the set of N vertices 
and the second vertex n2 is randomly selected from the kl neighbors of nl. In the 
same way n3(~ nl ~ n2) is selected randomly from N vertices and n4(~ nl ~ n2) 
is chosen from k3 neighbors of n3. Clearly this move conserves the edge numbers 
as well as the degree distribution. Rewiring is done foilowing this decision: If both 
nln3 and n2n4 are not linked and also 612 + 634 is greater than 613 + 624 we link 
nln3 and n2n4. Another possibility is if nln4 and n2n3 are not linked but 612 + 634 
is greater than 614 + 623 then we link nln4 and n2n3. If both cases are possible we 
accept one of them with probability I/2. If only one is satisfied we accept that. 
After rewiring we remove the edges nln2 and n2n4. If none of the two is satisfied 
we go for a fresh trial. 

On repeated trials of these moves the cost function gradually decreases. Initially 
it decreases very fast but eventually the success rate becomes very slow. To monitor 
the optimization process we kept track of the average edge length. Our best possible 
effort yields the average edge length (6ij} ~ 1.75 lattice constant. A picture of the 
optimized graph is given in Fig.3.1 (right). In this best possible optimized graph the 
edge lengths 6 have an exponential distribution as: 9(6) ~ exp(-g6) with g ~ 1.16 
(Fig.3.3(a)). Also the diameter of the graph ~(N) is measured and is observed to 
grow as N~' where # is estimated to be 0.404-0.02 (Fig.3.3(b)). Therefore this graph 
is scale-free but not a small-world graph. 
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Figure 3.5: Comparison of the (a) the moment exponents a(q) vs. q and (b) da(q)/dq 
vs. q for the BTW model on ordinary square lattice (solid line) and the optimized 
SFG on square lattice (dotted line). 

3.5 S a n d p i l e  m o d e l  on  an o p t i m i z e d  S F G  on Eu-  

c l i d e a n  s p a c e  

The deterministic BTW sandpile model is then studied on such an optimized SFG 
on a square lattice [91]. The avalanche size distribution is calculated for three 
different system sizes L --- 32, 64 and 128. It was difficult to go beyond this size 
because of the large optimization times required. First we tried to make a scaling 
plot of the size distribution data. In Fig.3.4(a) we show this plot, which shows 
reasonably well collapse of the data in the intermediate range of the avalanche sizes. 
The corresponding/3 and D values fitted are 2.4 anci 2 respectively giving a possible 
value of T BTW ~ 1.2. However for large avalanche sizes the collapse is much worse 
and the data  for different system sizes separate out. This is a typical behavior of the 
BTW like models which indicates strongly the presence of the multi-scaling behavior 
[26, 29]. 

The multi-scaling behavior is studied in more detail by the evaluation of the 
various moments of the avalanche size probability distribution. The q-th moment 
of the distribution is defined as (sq/ = f sqProb(s, L)ds. In case the distribution 
Prob(s, L) obeys the finite size scaling behavior for the whole range of avalanche 
sizes, it can be shown that  (sq/ ~ L ~(q) where a(q) = D(q - r + 1) for q > T -- 1 
and a(q) = 0 for 0 < q < T -- 1. The q dependent exponent a(q) is determined 
from the slope of the plot of log(sq(L)) with log L, which in our case are for L = 
32, 64 and 128. The interval between successive q values is 0.02 and moments are 
calculated at 251 values of q between 0 and 5. In Fig.3.5(a) we show a plot of a(q) 
vs. q on a linear scale. In Fig.3.5(b) the derivative of a(q) is plotted with q. Had the 
Prob(s, L)followed a simple FSS behavior the da(q)/dq in Fig.3.5(b) would have 
saturated for large q values. In stead, the curve gradually increases with q, very 
similar to the multi-scaling behavior of BTW model. To compare we plot both a(q) 
and da(q)/dq of the ordinary BTW on square lattice studied for same system sizes 
with different line styles. We see that  in both plots the behavior is very similar and 
the difference between the two curves is very small, within 2-3 %. 
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The stochastic Manna sandpile is also studied on the optimized SFGs for the 
same system sizes. The scaling exponents are estimated as: D - 2.62 and ~ = 3.4 
giving ToMpt anna ~ 1.3 (Fig.3.4(b)). This value of T is compared with the corresponding 
T ~ 1.28 value of the ordinary Manna sandpile. 

3.6 Conc lus ion  

In conclusion, we studied the BTW sandpile model on a BarabgLsi-Albert scale-free 
graph of N = L 2 vertices where the vertices are the sites of a square lattice of size L. 
The number of outflowing g~ains Hi at each lattice site i except the boundary sites is 
equal to the degree ki of the corresponding vertex of the SFG situated at that  lattice 
site. The SFG is then optimized minimizing the total wiring length but keeping the 
degree distribution intact. On such an optimized SFG on the Euclidean space we 
observe that  the sandpile model has the same scaling behavior as the BTW model 
where as the deterministic sandpile on the un-optimized SFG has a mean-field like 
behavior. 



Chapter  4 

Part ic le-hole  s y m m e t r y  in a 
sandpile  model  

4.1 I n t r o d u c t i o n  

In this chapter we describe our work on a particle-hole symmetry in a sandpile model 
[99]. Holes are defined as the absence of particles (sand grains) and the toppling of 
'hole columns' are defined in terms of a similar but reverse set of rules as described 
below. 

The main question we would like to ask in this paper is, for an arbitrary determin- 
istic sandpile model to at tain the BTW critical behavior is it absolutely necessary 
that  the stat ionary states should only be the recurrent states of the BTW model? 
Can it happen that  the neighboring transient states which are very close to the 
recurrent states of the BTW model are also acceptable in the stationary states to 
achieve the BTW critical behavior? In other words we would like to investigate that  
to what extent the B T W  critical behavior is robust. 

In a stable state of the sandpile model the number of particles at all sites are 
less than their threshold heights. Addition of a particle takes the system from one 
stable state to another stable state through a number Of successive unstable states 
through a series of t0pplings. Dhar had shown that  under this sandpile dynamics, 
a system spontaneously evolves to a stationary state where it passes through only 
a subset of all possible stable states. The states of this subset are called 'recurrent 
states' and they are characterized by the absence of forbidden sub-configurations 
(FSCs) [22]. All recurrent states occur with uniform probabilities in the stationary 
state. A stable state which is not a recurrent state is called a ' transient state' and 
it never appears in the stationary state. 

In the following we introduce the concept of holes in the framework of BTW 
sandpile and show that  on addition of holes to the system the stationary states of 
the resulting sandpile model cannot be anymore strictly restricted to the recurrent 
states of the BTW model since the FSCs can very well be present in the stationary 
states of this model. In fact the recurrent and stationary states coincide in this 
model. However the distribution of weights of these states may be quite non-trivial 
and this question remains open. Our numerical results show that  even in such a 
case the critical behavior is very similar to that  of the BTW model. 

In w we discuss the particle-hole addition model, in w we discuss our results 
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Figure 4.1: The  f luctuat ion of the  mean number  of particles per site wi th  t ime in 
a sys tem of size L = 64 for the probabili t ies p = 0.60 (top) 0.52 (middle) and 0.50 
(bot tom).  Both  the width  of f luctuat ion and the correlation t ime increases as p 
approaches Pc = 1/2. 

for the above model and finally we conclude in w 

4.2 P a r t i c l e - h o l e  add i t i on  m o d e l  

Here we start restating the usual BTW sandpile model on a square lattice: Particles 
are added to the system one by one as hi ~ hi § i. If the number hi of particles 
at a site is greater than the threshold height Hp then the site i looses four particles 
and each neighboring site gets one each: 

hi ~ hi - 4 and hj -~ hj + 1 (4.1) 

On the other hand a 'hole' may be defined as the absence of a particle. Therefore 
adding a hole to a lattice site implies removing one particle from that site: hi --* 
hi - I. Repeated addition of holes at randomly selected sites may reduce the number 
of particles at a site less than another ,pre-assigned threshold Hh. If this model is 
studied on a square lattice then if hi is less than Ha, the site losses four holes i.e., 
four particles are added to this site and each neighboring site gets one hole (looses 
one particle) each: 

hi --* hi § 4 and hj ~ hj - 1 (4.2) 

We call this event as a 'reverse toppling'. Consequently at some of the neighboring 
sites particle numbers may also decrease below the Hh which again reverse topple 
and thus an avalanche of reverse topplings takes place in the system. Addition of a 
particle creates a particle avalanche where as the addition of a hole creates a hole 
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Figure 4.2: The time averaged number of particles per site (h(p, L)I in the stable 
stationary states as a function of the probability of adding a particle p. This variation 
is symmetric about the mid point Pc = 1/2 and (h(pc, L)) = 3/2. The data  is for 
L = 32 (circle), L = 64 (square) and for L = 128 (triangle). 

avalanche. We assign Hp = 3 and Hh = 0. Inverse avalanches were introduced pre- 
viously to get back the recursive configuration corresponding to the particle deletion 
operator [i00]. 

During the particle avalanches particle current flows into the system by addition 
of particles in the bulk of the system and then they flow out of the system through 
the boundary. On the contrary in hole avalanches particle current flows into the 
system through the boundary and flows out of the system through the bulk of the 
system. 

In [99] we study a combination of particle and hole avalanches. We probabilisti- 
cally add either a particle with a probability p or add a hole with a probability 1 -p. 
Therefore when p -- I, the situation is identical to the ordinary BTW model of sand 
avalanches when no hole is added. On the other hand for p -- 0 only holes are added 
to the system and no particle. Therefore for p > 1/2 more particles are added to 
the system than the number of holes and therefore the net particle current is 2p- 1 
and it flows from the bulk of the system to the boundary. However for p < 1/2 holes 
are dropped more frequently than particles and the net particle current flows in the 
opposite direction. At p = I/2 however there is no net current in the system. We 
consider p -- Pc -- 1/2 is a critical probability and study the behavior of this system 
around this critical probability. The time t is measured by the number of particles 
and holes dropped in the system. 

4.3 R e s u l t s  

4.3.1 Mean  number  of particles per site 

Let hi(t,p, L) be the generalized notation for the number of particles at site i, then 
the total number of particles in the system is: h(t, p, L) = EL~lhi(t, p, L). The mean 
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Figure 4.3: Scaling of the correlation time T(p, L) of fluctuation of the particle 
density (h(p, L)> with the probability p for system size L. The data collapse is 
shown for two system sizes: L = 32 and 64. 

number of particles per site is then (h( t ,p ,L))  = h ( t , p , L ) / L  2. In the stationary 
state (hit, p, L)> fluctuates rapidly around its time averaged value (h(p, L)>. These 
fluctuations are shown in Fig.4.1 for the system size L = 64 and for p = 0.60, 0.52 
and for 0.50. It is observed from this figure that  both the width as well as the 
correlation time of fluctuation increases as p approaches Pc from either side of it. 

The time averaged number of particles per site (h(p, L)> is a function of p and the 
system size L. At p -- 1 it is equal to the average number of particles per site in the 
ordinary B T W  model which is hi = 2.125 in the asymptotic limit of large system 
sizes [31, 39]. As p decreases (h(p, L)> slowly decreases but near Pc -- 1/2 it decreases 
very fast to a value of (h(1/2, L)> =3/2. When p decreases from 1/2 even further, 
(h(p, L)> decreases fast but eventually saturates to a value of h0 = 3 - hi = 0.875. 
In Fig.4.2(a) we show this variation. To see if the steep rise of (h(p,L)> around Pc 
is associated with some critical exponent, we make a scaling plot of (h(p, L)> with 
P - Pc for a number of different system sizes L in Fig.4.2(b). The data collapse 
shows: 

(h(p, L)> ~ ~[(p - pc)Ll'6s]. (4.3) 

where, ~ is the scaling function. 
The width of fluctuation is calculated as: w(p, L) = (h2(p, L ) > -  (h(p, L)> 2. For a 

given L the width is maximum at p = pc and then monotonically decreases as IP-Pcl 
increases. On the other hand for a given p the width also decreases with increasing 
L. It is observed from numerical estimation that  at p = Pc, w(pc, L) decreases with 
system size as w(pc, L) = Wo + w lL  -1/2 where wo ~ 0.076 and wl ~ 0.527 are 
estimated. Beyond Pc the width decreases as: w(p, L) = IP - Pc] -~ with ~ ~ 0.82 is 
estimated. 
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Figure 4.4: (a) The autocorrelation C(t, Pc, L) of the time series of the fluctuating 
mean number of particles per site (h(t,pc, L)) for the system size L = 64 at Pc = 1/2. 
C(t, Pc, L) is plotted with the scaled time axis t /L  2 on a semi-log scale. In (b) the 
power spectrum S(f ,  Pc, L) is plotted with the frequency f on a double logarithmic 
scale showing a power law decay of the spectrum with the spectra exponent being 
nearly equal to one. 

4 . 3 . 2  A u t o c o r r e l a t i o n  o f  t h e  f l u c t u a t i n g  m a s s  

The time-displaced autocorrelation of the fluctuating mass per site is defined as: 

C(t ,p,L)  = (h(to + t ,p,L)h(to,p,L)) - (h(p,L)) 2 
(h2(p,L)) - (h(p,L)) 2 (4.4) 

This autocorrelation is observed to decay exponentially as: 

C(t,p, L) ~ exp(- t /v(p,  L)) (4.5) 

where 7"(p, L) is the correlation time. On a semi-log plot of C(t,p, L) vs. t the 
slope of the plot gives the value of the correlation time T(p, L) which is measured 
for different probabilities p and for different L values. For a given system size the 
correlation time is maximum at Pc and then decreases monotonically with increasing 
IP-Pd. Also T(p, L) increases with L at a given p. A scaling plot of the data  collapses 
very nicely as (Fig.4.3): 

T(p,L)L -3.a6 ,,~ ~ ( ( p -  pc)L 1.5) (4.6) 

At Pc, T(pc, L) increases as L ~ where # is estimated to be 3.46 4- 0.10. 
Fourier transform of the autocorrelation function C(t, p, L) is known as the spec- 

tral density or power spectrum S(f ,  p, L) defined as 

s S( f ,p ,L )  = e-qtC(t ,p ,L)dt  (4.7) 
o O  

In Fig.4.4(a) we show the plot of the autocorrelation function C(t, pc, L) with 
scaled time t /L  2 for a system size L = 64 and exactly at Pc. A straight line plot 
on a semi-log scale implies an exponential decay of the correlation function. In 
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Figure 4.5: The stretched exponential decay of the particle avalanche size distribu- 
tions P(s) with the avalanche size s at Pc = i/2. The estimated exponent is ~, 

0.4 

Fig.4.4(b) we show the Fourier transform of the autocorrelation function plotted 
in Fig.4.4(a) generated by the plotting routine 'xmgrace'. On a double logarithmic 
scale the power spectrum S(f, pc, L) vs. the frequency f plot gives a very good 
straight line for the intermediate range of frequencies implying a power law decay 
of the spectral density: S(f, Pc, L) ~ f-~. We estimate fl ~ 1 showing the existence 
of I/f type of noise in the power spectrum. 

4.3.3 Particle-hole avalanche statistics 

The avalanche size distributions for both particle as well as hole avalanches are 
measured. It is observed that in the range of p > pc the particle avalanche sizes are 
of widely varying magnitudes and of all length scales where as the hole avalanche 
sizes are very small and of the order of unity. Opposite is the situation for the range 
P < Pc. At Pc however both the particle as well as hole avalanche size distributions 
are similar and they are found to follow a stretched exponential distribution like: 

P(8) ~ exp(-as")  (4.8) 

where 3, is estimated to be around 0.4 (Fig.4.5). 
Away from this critical point Pc, the particle avalanches have power law distri- 

bution for p > Pc and hole avalanches follow power law distributions for p < Pc. 
Particle avalanche size distributions are calculated at p -- 0.51 and for system sizes 
L = 256,512, 1024 and 2048. These distributions are very similar to the avalanche 
distributions in BTW model. For small avalanche sizes they do follow a power law 
distribution P(s) ~ 8 -r where the exponent T slowly varies with the system size 
and gradually increases towards 1.2. The large avalanches have multi-fractal dis- 
tribution and simple scaling does not work for the full distribution [29, 26]. Also 
the average avalanche size, area and life times have system size dependences very 
similar to those in the B T W  sandpile: (s(L)> ,-~ L 2, (a(L)) ,-~ L 1'72 and (t(L)) ~ L. 
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4.4 Conc l us i on  

In a sandpile model addition of a hole is defined as the removal of a grain from 
the sandpile. We show that  hole avalanches can be defined very similar to particle 
avalanches. A combined particle-hole sandpile model is then defined where particle 
avalanches are created with probability p and hole avalanches are created with the 
probability 1 - p .  It is observed that  the system is critical with respect to either 
particle or hole avalanches for all values of p except at the symmetric point of 
Pc = 1/2. Specifically at p = 1 the system is identical to the ordinary BTW model 
for only particle avalanches. Similarly at p -- 0 there is only hole avalanches and 
their distribution are very similar to the avalanche size distribution for the BTW 
model. In the range 1/2 < p < i there are particle as well as hole avalanches, but the 
net current is due to the particles which flows into the bulk of the system. Critical 
behavior of the particle avalanches are observed to have multi-scaling behavior and 
is very similar to those of the BTW model. Reverse situation happens in the range 
0 < p < I/2 where net current is due to holes which flows into the bulk of the 
system. The hole avalanche sizes have multi-scaling distributions very similar to 
the BTW model. However at pc the fluctuating mass density is having non-trivial 
correlations characterized by I/f type of power spectrum. 
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Chapter 5 

Directed fixed energy sandpile 
model  

5.1 I n t r o d u c t i o n  

Application of a global directional bias onto a system has been proved to have 
strong effect on the critical behaviors of various models in Statistical Physics. In 
these directed systems, degrees of freedom of the individual elements is reduced, 
which shrinks the configuration space of the system compared to undirected system. 
As a result a directed system is simpler and easily tractable analytically. Examples 
include Directed percolation [64], Directed Sandpile Model [33, 35, 36], Directed 
River networks [I01] and Directed Self-avoiding walks [102] etc. 

In this chapter we study fixed energy sandpile (FES) model with a directional 
bias. Our motivation is to find a simpler yet non-trivial fixed energy sandpile which 
may have non-trivial critical behavior. 

The fixed energy sandpile model [66, 67, 68] is defined within a closed system 
with no external driving. Thus the total mass of the system is conserved fixed by 
the initial condition. The control parameter is the density ~ of grains. The dynamics 
of the system starts with a random distribution of N = ~L 2 grains. Initially some 
sites may be unstable, which topple. Consequently some of the neighboring sites 
may topple again and the activity continues. The activity or the order parameter 
at a certain time is measured by the fraction p of lattice sites which are unstable 
at that time. For an infinitely large system there exists a critical threshold ~c such 
that if ~ < r the activity terminates and the system gets absorbed in an inactive 
state where as for ~ > ~c the activity of the system fluctuates but maintains a 
steady mean value [66]. In between these two regimes there exists a critical point 
(~ - ~c) separating an absorbing phase from an active phase. The order parameter 
equals zero for ~ < r and follows a power law Pa ~ (r - (c) ~ for ~ > (c. The  
correlation length ~ and relaxation t ime T both  diverges as ~ --* r their  critical 
behavior is characterized by the exponents  ~• and ~11, defined via ~ ~ ]( - ~c[ -v~ 
and  T ~ 1~ -- (el -vu respectively. The dynamical  critical exponent  is defined via 
~. ~ ~z which implies z = ~11/~• 

After the  dynamics  starts,  the system takes some t ime to relax to the  s teady state. 
In general  the  mean act ivi ty (P/ is a function of the densi ty ~ i.e., the deviat ion 
from the c r i t i ca lpo in t  A = ~ - (c and also the system size L. The simultaneous 
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Figure 5.1: Filled circles denote the sites on the toppling front in an infinite avalanche 
of DDFES on an oriented square lattice of size L = 32. This avalanche is periodic 
and has a period 64. Horizontal empty circles denote positions of the TF in another 
63 time units. The two end sites of the TF fluctuates but maintains a mean distance 
of L/2.  

dependence of activity bn A and L is expressed by the following scaling form: 

{p(A, L)} c< L-Z/~g(LI/~A) (5.1) 

where ~(x) is an universal scaling function such that ~(x) --, x ~ when x >>  1. 
This implies that for a certain range of A if L is so large that L 1/vJ-A >>  1 then 
{p(A, L) / i s  independent of L and depends solely on A as {p(A, L)} ,~ A~. On the 
other hand when x <<  i, G(x) ~ constant, independent of both A and L implies 
that right at the critical point ~ -- ~c the order parameter varies with the system 
size as: <p(L)l ,'~ L -~/'q-, independent of A. 

To which universality class the FES model exponents should correspond to? In- 
tensive research has been done to study the universality class of the phase transitions 
in FES models. It has been suggeste d that FES belongs to the universality class 
of the linear interface models (LIM)but  not of that of the Directed percolation 
(DP) universality class [66, 67, 68, 103]. DP is generic for continuous absorbing 
state transitions in the absence of a conservation law where as in FES there exists 
a conserved field which is the density and it couples the order parameter, i.e., the 
mean activity. We, in the present study like to examine if an explicit application of 
the directional bias to the FES system makes the system behave as DP or it results 
to another new universality class. 

In w we discuss the directed fixed energy sandpile model - both deterministic 
and stochastic case, in w we compare deterministic and stochastic directed FES 
and finally we conclude in w 
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Figure 5.2: For DDFES the mean activity (p) in a system of size L = 64 which grows 
with the density in a step like manner where the step heights are Ap = I/(2L). 

5.2 Directed fixed energy sandpile (DFES) 

We studied directed fixed energy sandpile(DFES) models on an oriented square 
lattice of size L placed on the xy plane, with closed boundary [104]. A preferred 
direction is imposed on the system along the -y direction. The critical height of the 
sand column at all sites is Hc -- 2. Initially (L 2 grains are randomly distributed 
among the lattice sites. Due to toppling two grains of sand are distributed to the 
two neighbouring sites along the preferred direction i.e. at the lower-left (LL) and 
lower-right (LR) positions. We studied two different cases depending on the grain 
distribution process during toppling. In one case both the LL and LR sites get one 
grain each which is called the 'deterministic directed fixed energy sandpile' model 
(DDFES). In another case each of the two grains is distributed randomly to any of 
the LL or LR positions which we call the 'stochastic directed fixed energy sandpile' 
(SDFES) model. 

5.2.1 Deterministic directed FES (DDFES) 

The critical point of DDFES can be arrived at from an inactive state by adding grains 
one by one on an initial empty lattice followed by the relaxation of the avalanche. 
On the average both the size and the life times of the avalanches increase as the 
density grows. For the DDFES model the toppling front (TF) of an avalanche is 
a set of horizontal contiguous sites which travels downward with unit speed. The 
length of the TF however fluctuates as shown in Fig.5.1. If at an intermediate time 
the TF has n sites, then at the next time step its length can be only n-I, n or n-b I. 
For a finite avalanche the TF first grows from a single site to a certain length and 
then shrinks to zero. The set of sites covered by the left and right end sites of TF are 
the paths of two annihilating random walkers [33]. For a finite avalanche they meet 
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Figure 5.3: The variation of the deviation of the critical density (c(L) of a system of 
size L from its critical value (c is plotted with L-l# ' , .  We obtained (a) for DDFES 
r ~ 0.4115,vll = 1/0.361 ~ 2.77 and (b) for SDFES (c ~ 0.5,till ~ 1. 

and annihilate, however for an infinite avalanche these two random walkers cannot 
meet and the best possible way it can be ensured if they can maintain a distance of 
L/2 on the average from each other. 

Therefore the minimum possible sustained activity for DDFES in a system of 
size L is p = I/(2L). For the DDFES it is found that if the density is slightly 
increased the avalanches created by the additional grains die away and the system 
maintains the activity of the infinite avalanche. In a sense the system gets locked 
with this activity for a certain range of grain density. However on increasing the 
density even further, a second infinite avalanche is created and both the TFs run 
simultaneously resulting a sudden jump in the activity by doubling its magnitude 
to I/L. This continues for some range of grain density" which ends at another jump 
in activity to 3/(2L). Thus in general the variation of activity is discrete and has a 
step like,variation with step heights I/(2L) (Fig.5.2). As the system size increases 
the step height decreases to zero and the variation of p with ~ becomes more and 
more smooth. Similar step-like behavior of the order parameter was also observed 
in [69]. 

The configurations at the steady state are periodic and the same detailed distri- 
bution of grain numbers at all sites repeat at regular intervals of time. The periodic 
time is always multiples of L in a L • L system. For small systems this period has 
different values for different initial configurations but in most (about 95%) cases the 
period is 2L and rarely L, 3L, 4L etc. However, for bigger system sizes e.g., for 
L = 512, 1024 or more the period is always 2L. This helps to calculate the order 
parameter.  Given an initial distribution of grains, it therefore needs to find out the 
mean activity over only a period and then average over many initial configurations. 

The critical density (c actually has a system size dependence. To study this 
variation we start  with a closed empty lattice of size L x L and go on adding sand 
grains one by one at randomly selected lattice sites similar to what is done in an 
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Figure 5.4: (a) Scaling of the order parameter (p(A, L) /wi th  the deviation A = r  
from the critical point for DDFES. From this da ta  collapse and Eqn. (5.1) we find, 
/3/v• = 1 and l /v •  = 0.55. (b) Variation of the order parameter (p(A, L) } with the 
deviation A = r - r from the critical point for SDFES of a system of lattice size 
L = 64. The plot of da ta  for different system sizes fall on top of one another. Thus 
using Eqn. (5.1) we conclude,/3 ~ 1 and 1/~• ~ c~. 

open sandpile. The dynamics of the avalanche is followed for each sand grain added. 
The mean avalanche size increases with the density of grains in the system and at a 
certain ( = ~c(L) depending on the sequence of randomly selected sites at which the 
grains were dropped, the activity does not stop any more and an "infinite" avalanche 
continues for ever. In practice, in our simulation we followed an avalanche up to a 
certain relaxation time T = 106 for L < 128 and T = 5 x 106 for L _> 128 to declare 
the avalanche as infinite. Repeating this simulation a large number of times, every 
time starting from an empty system, we calculate the average critical density (~c(L)l. 
These values are then extrapolated as: ((c(L)l = ~c + AL -I/v" for DDFES as shown 
in Fig.5.3(a) to obtain ~c = 0.4115 • 0.002 and I/~ii = 0.361 giving ~II ~ 2.77. We 
also estimated ~c by the scaling plot of mean avalanche size (s(L)IL -~176 vs. AL ~176 
which is also consistent with our estimate of (c = 0.4115. 

Initially after randomly distributing ~L 2 grains the system is allowed to evolve 
up to a relaxation time T after which the activity is measured at every time step. 
To measure the mean activity (p(A L)I for a slightly higher density ~ + ~r we 
take the advantage of the fact that the system dynamics is deterministic. On the 
same initial distribution of grains corresponding to the density ~ another (~)L 2 
grains are randomly added. This ensures that if certain density gives sustained 
activity, its higher density necessarily gives a non-stop activity. These measurements 
are then repeated for different system sizes. In Fig.5.4(a) we show the scaling of 
the order parameter on double logarithmic scale for DDFES. Plotting (p(A, L)IL 
with L~ we observe a nice data collapse for system sizes L =128, 256 and 512. 
Comparing with the Eqn. 5,1 we conclude ~/~• = I and I/~i=0.55. This implies 
that ~ = ~• ~ 1.82. 
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Figure 5.5: The average of maximal life-time (tc(L)l of the avalanche prior to the 
infinite avalanche is plotted with L for DDFES. The slope gives a measure of the 
dynamical exponent z -- 1.49. 

From the analysis made so far we can estimate the dynamical exponent z = 
~Ii/~• ~ 1.52. This value of the dynamical exponent is directly verified by measuring 
the survival probability. The survival probability P(t) that the initial activity in a 
random distribution of grains survives a time t has an exponential distribution as: 
P(t) ~ exp(--t/T). At the critical point ~c the characteristic time is a function of 
only the system size as: T(L) ~ L z where, z is the dynamical exponent z = Vll/V• of 
the system. Therefore we calculate the average survival time (tc(L)l which is also 
proportional to L z at ~c for different system sizes. This is done again by dropping 
grains of sand one by one into a closed system and calculating the life time of the 
largest avalanche before the system gets locked into an infinite avalanche. Averaging 
over many initial configurations the largest life-time (tc(L)l is plotted in Fig.5.5 for 
DDFES on a double logarithmic scale. The slope of the straight line gives the value 
for the dynamical exponent z = 1.49-4-0.05 for DDFES compared to 1.52 obtained 
previously. 

5.2.2 Stochastic directed FES (SDFES) 

In the stochastic directed fixed energy sandpile model the critical density ~c is found 
to be very close to 0.5. A similar to DDFES calculation of the system size dependent 
critical density after extrapolation (~c(L)l - ~c ~-A tL-z/vll gives ~II ~ 1 and A ~ ~ 2.4 
(Fig. 5.3(b)). The order parameter for SDFES has a highly linear variation with A 
as: p(A) -- AA where A ~ 0.46 (Fig.5.4(b)). The plot of (p(A,L)I vs. A is a very 
nice straight line and the plot of data for different system sizes fall on top of one 
another. We conclude that/3 ~ 1 and ~• ~ cx~. 
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Figure 5.6: Two snapshots of height configurations in the directed fixed energy 
sandpile model on a 32 • 64 oriented square lattice, downward direction being the 
preferred direction. Stochast ic  DFES is shown on the left where as the deterministic 
DFES is shown on the right. Active sites are shown by filled circles, open circles 
denote sites with height 1 and vacant sites are not indicated. 
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Figure 5.7: (a) Variation of the interface width of Hi(L, t) denoting the number of 
topplings up to the time t with time t for each site i for lattice sizes L = 64, 128 
and 256 for DDFES model studied at (c(L). (b) Data  collapse analysis for DDFES 
at ~c(L) for the interface width of Hi(L, t) in (a) for lattice sizes L = 64, 128 and 
256. 
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Model ~c f~ ~ ~11 
DDFES 0'4115 1.82 1.82 2.77 
SDFES 0,5 1.00 ce 1.00 
BTW FES 2.125 0.7 0.90 1.49 
Manna FES 0.71695 0.64 0.82 1.29 
DP 0.583 0.733 1.295 

Table 5.1: Comparison of critical points and exponents for different models of fixed 
energy sandpiles. Exponent values for BTW and Manna sandpiles are taken from 
[67], DP exponents from [105]. 

5.3 Comparison: D D F E S  and SDFES 

We also studied the DFES models on oriented square lattices of rectangular shapes, 
the longer sides being parallel to the preferred direction. For DDFES model the TFs 
are contiguous sites covering the transverse direction in the form of rings. These 
toppling rings are perfectly stable, once formed they never change in shape. As 
density increases, the number of such rings increases. On the other hand for SDFES, 
the toppling sites are randomly scattered throughout the system (Fig.5.6). 

The roughening of the associated interface [65] in our FES models is studied. 
If H~(L, t) denotes the number of topplings up to the time t for each lattice site 
i then the set of H~(L, t)s for all i represent an interface [67]. For DDFES the 
width of this interface fluctuates periodically (Fig.5.7(a)) but its average grows as: 
W(L,t) ~ La~(t/L z) where we find c~ -- 0.31 and z = 1.6 (Fig.5.7(b)) in comparison 
to the Linear Interface Model results ~ = 0.75 and z = 1.56 [106]. 

5.4 Conclusion 

In this chapter we have discussed the directed version of the fixed energy sandpile 
on the oriented square lattices. Like isotropic FES, our directed FES also shows a 
continuous phase transition from an absorbed phase to an active phase. Two versions 
of the model are studied. In the deterministic FES, the grain number configurations 
are periodic and repeats at regular time interval of 2L. For this model the critical 
points as well as the critical exponents are found to be non-trivial and belong to 
a new universality class. The other version has the stochastic toppling dynamical 
rules and exponents of mean-field natuTe are found for this model. In Table 5.1 we 
compare the critical points and the exponents for different models of fixed energy 
sandpiles. 



Chapter 6 

A Percolation model  of Diagenesis  

6 . 1  I n t r o d u c t i o n  

It is well known that sedimentary rocks have highly porous structures, typically 
the pore space is highly branched and connected networks of pores exists in the 
macroscopic length scales, even when the porosity is very negligible. This connected 
pore space plays a very important role in transport properties like conductivity and 
permeability in rocks, where the brine solution filling up the pore-space is responsible 
for transport properties. Study and understanding of the properties of the pore 
structures of these rocks are very important in oil-exploration, ground water flow, 
spread of pollutants etc. 

An interesting property of these rocks is that they appear not to have a finite 
percolation threshold [72]. It has been observed that samples of sedimentary rocks 
show finite conductivity even when the porosity is less than 1%. This implies that 
a connected network of pores exists in the macroscopic length scales, even when the 
porosity which is the volume fraction of the void space is very little. 

Several empirical laws reflect this property. Archie's law [73] describes the elec- 
trical conductivity of brine filled rocks a(r and the porosity r in the following 
way: 

= ar z (6.1) 

Here, a~ is the conductivity of water, a ~ 1 is an empirical parameter and z ~ 2 
is a non-universal exponent that depends on characteristics of the rock structure. 
This law suggests that a finite conductivity persists even in the limit of r ~ 0 and 
therefore the percolation threshold is zero. 

Another empirical law known as the Kozeny equation [74] relates the permeability 
K(r of the rock structure to the porosity r through a similar power law, 

K(r (6.2) 

where, z' ~ 3, So is the specific surface area and c is an empirical constant. This 
equation also suggests that the pore space is connected in the r --, 0 limit. 

The permeability of rock structure is defined as the velocity of the fluid per unit 
pressure gradient times the viscosity of the fluid. This is known as Darcy's law 
[75, 76]. 

J = ( A K / # ) V P  (6.3) 

61 
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Figure 6.1: Diagenetic conditions for m = 2 on a square lattice. 

where J is the volumetric flow rate, A is the cross-sectional area of the sample, K 
the permeability, # the viscosity of the fluid flowing through the porous medium 
and V P  the pressure gradient. 

A physical process which is responsible for achieving a connected pore structure 
at very low porosity is known as "diagenesis". Diagenesis is a complex restructuring 
process by which granular systems evolve in geological time scales from unconsol- 
idated, high-porosity packings toward more consolidated, less porous structures. 
Formation of sedimentary rocks starts with deposition of sand grains under water or 
in air [77, 78, 79]. Initially this gives an unconsolidated and highly porous ~ 40-50% 
sediment. Sedimentation is followed by compaction under pressure and diagenesis, 
before the consolidated sandstone is formed from the loosely packed sediment [80]. 
Diagenesis may reduce porosity by an order of magnitude and permeability by as 
much as four orders of magnitude [77]. 

The final characteristic of the pore network depends strongly on the diagenetic 
process. Sandstones are usually formed under water, which contains dissolved salts. 
Depending on the nature of the pore-filling fluids, salts may be deposited as crystal- 
lites in the crevices or along walls of the rock structure, a process called "cementa- 
tion". Otherwise, portions of the existing solid structure may get eroded or dissolved 
out in a "dissolution" process. The former decreases the porosity of the rock while 
the latter increases porosity. The two processes may take place simultaneously. The 
details of the chemical nature of the solid and pore filling fluid determines whether 
diagenesis leads finally to a stable structure, or to a continuously developing struc- 
ture eventually giving rise to caverns of macroscopic size. 

Sahimi had classified the theoretical studies of modeling diagenesis in two ways 
[79]. The approach of "chemical modeling" relies on solving continuum equations 
of transport and reactions ignoring the morphology of the pore space. The second 
approach is "geometrical modeling" in which the reaction kinetics and mass transfer 
are ignored. These models start with geometrical descriptions of initial unconsoli- 
dated pore space which evolves under simple rules leading to reduction of porosity 
but maintaining the connectivity. 

For example the model of Wong et. al. [81] starts with a regular lattice in 
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Figure 6.2: (a) On an initial configuration as in (i) if the central site is first updated 
one gets the SC in (ii). However if the sequential updating/rule (I) (see text) is used 
one gets the SC as in (iii). (b) In parallel updating this configuration is locked in a 
period of cycle 2. 

which each bond is a fluid filled cylindrical tube of uniform radius and conductivity. 
This system evolves to a random resistor network through a random bond-shrinkage 
mechanism where randomly selected bonds of the network shrinks its radius by a 
constant factor. This model maintains global connectivity even in the limit of r --. 0 
and reproduces power law behavior as in Archie's law. 

A second model of Roberts and Schwartz [82] starts with a Bernal distribution of 
dense random spheres of equal radii modeling grains. These spheres grow in unison 
and the pore space, i.e. the space not covered by the spheres shrinks its volume. 
This model gives a low but non-zero percolation threshold r ~ 3.5%. The bimodal 
ballistic deposition model (BBDM) [83] tries to represent the deposition realistically, 
but does not address the problem of diagenesis. 

In our model, we do not take into account the effect of chemical reactions ex- 
plicitly, so this is also a geometrical modeling of diagenesis. We try to simulate the 
restructuring as it may actually occur in porous rocks due to fluid flow. Isolated 
projected grains on a wall are smoothed out modeling dissolution, and a gap or 
cul-de-sac in a solid is filled by deposition modeling cementation. The restructuring 
involves two processes. Growth of the solid phase at sites with a relatively larger 
number of occupied nearest neighbors, to represent cementation, and removal or 
culling of occupied sites which are isolated, or have too few nearest neighbors, to 
represent dissolution. This algorithm is a stabilizing process leading to a stable 
structure after several time steps. It may be regarded as a self-organizing process 
as discussed recently by several authors [107, 108]. 

Before proposing our model of diagenesis we briefly describe the Bootstrap perco- 
lation model which is very related to our model in section w In w we describe 
our model for diagenesis in sedimentary rocks, in w we discuss the results for our 
model of diagenesis and finally we conclude in w 

6.1.1 Bootstrap percolation 

In Bootstrap percolation model (BPM) sites of a regular lattice are occupied with 
a certain probability p and if these occupied sites have less than certain number of 
occupied neighbors, m, they are successively removed by a process called 'culling' 
[109, Ii0, III, 112, 113, 114]. On repeated application of the culling process a stable 
configuration (SC) is reached where no further sites can be culled. There exist a 
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Figure 6.3: A stable configuration of the diagenetic percolation on a square lattice 
of system size L = 80 and with m=2. Sites on the "infinite" incipient cluster are 
joined by lines and sites on the isolated clusters are shown by filled circles. 

threshold value p m ( B P M )  of the probability p, depending on the value of m, beyond 
which the stable configuration (SC) is percolating. 

The study of BPM was motivated by the behavior of some magnetic materials 
like TbcYl_cSb where the magnetic moment is determined by a competition of the 
exchange and the crystal field interactions. In such materials, a spin if surrounded 
by too many non-magnetic neighbors may become non-magnetic. So if the impurity 
concentration is gradually increased the magnetic order may get destroyed [109]. 

It is evident that for m < 2, the connectivity of the lattice, is not affected by 
the culling condition since nothing is culled for m = 0, isolated sites are culled for 
m = 1 and the dangling chain of sites are culled for m = 2. Therefore for all values 
of m, p ~ ( B P M )  is greater or equal to the ordinary percolation threshold, pc(ord). 
It is seen in [115] that for m > d + 1 the SC is a single infinite m-cluster. 

The percolation probability QBmPM (p) is the fraction of particles that survive on 
the infinite percolating cluster, which varies as 

Qm(p) - Qm(p '~(BPM))  "" (p - pm(BPM))~  (6.4) 

where, 
Qm(pm(BPM))  = lim Qm(p) (6.5) 

p..--~p~(BPM) 

Due to finite size the scaling variable scales as L/~ where ~ = ( p -  pm(BPM))-~ '  
is the correlation length. The scaling relation is, 

Qra(p) - Qm(pm(BPM))  = L-~/VF[(P - P ~ ( B P M ) )  Lip'] (6.6) 

where, the scaling function F(x)  ---, x ~ for large L. In [113] from scaling plot the 
values obtained are ~ ~ 4/3 and p ~ 0.1 which are comparable to the corresponding 
values of 4/3 and 5/36 in the ordinary percolation in 2-d. 
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Figure 6.4: The porosity r as a function of the initial occupation probability p 
for a square lattice of system size L = 64. The continuous curve is a fit to the data 
having the form given in Eqn. 6.7. 

For the nearest neighbor Ising model at the zero temperature with Glauber spin- 
flip dynamics in  the absence of an external magnetic field the direction of a spin 
follows the direction of the majority of the neighboring spins. In the case when 
there are equal number of up and down spins in the neighborhood, a spin decides its 
direction with equal probability. It has been observed in [116] that  starting from an 
arbitrary random initial configuration of spins this system does not reach the global 
ground states where all spins are either up or down but arrive at a frozen two-stripe 
state in a finite fraction of cases [116]. 

6.2 Our model  of Diagenesis 

In our model [117, 118], the sites of a regular lattice are randomly occupied (si = 
1) with a probability p representing pores and are kept vacant (si = 0) with a 
probability 1 - p  representing solid grains. This configuration therefore models the 
initial unconsolidated porous structure with porosity r = p. The occupation 
status of a site i depends on its neighbor number i.e., the number of occupied 

i is the occupation of the j - th  neighbor of the site i. neighbors n~ = ~js~ where, sj 
All sites of the lattice are sequentially updated according to the following diagenetic 
conditions (Fig.6.1) : 
(i) Culling condition: Occupied sites having fewer than m occupied nearest neighbors 
are vacated i.e., si ---* 0 if n~ < m. This condition models the cementation process 
(ii) the sites with exactly m occupied neighbors remain unaltered i.e., si ~ si if 
ni = m and 
(iii) Growing condition: Vacant sites having more than m occupied nearest neighbors 
are occupied i.e., si ~ 1 if n~ > m. This condition models the dissolution process. 

Starting from a random initial configuration the system evolves in different time 
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Figure 6.5: The pl0t of the percolation thresholds p2c(L) for m = 2 for a square 
lattice of system sizes L as a function of L -1/' .  Using v -- 4/3, the correlation 
length exponent for ordinary percolation, we get the linear fit for large L values. 
The extrapolated value for p2c is 0.5005. 

steps following these rules. One time step consists of update at tempts of all the 
lattice sites. One sweep of the lattice results in another occupied configuration which 
is again updated by the same rules. This process is continued till the system reaches 
a stable configuration (SC) where no further site changes its occupied or vacant 
status. In general the SC may have many clusters of occupied sites. However, there 
exists a percolation threshold Pine of p depending on the value of m so that  the SC 
must have a spanning ("infinite") cluster of occupied sites for p > Pmc in an infinitely 
large system. 

6.2.1 Stable configuration (SC) 

Like the cellular automata models, the sequence of updating different sites is impor- 
tant  in our problem. Three possible sequential updating procedures are as follows: 
(I) Sites are labeled from 1 to L 2 from left to right along a row and from the first 
row to the last row. 
(II) Only sites with n~ ~ m are randomly selected and updated. 
(III) The lattice is divided into odd and even sub-lattices and are updated alternately 
but sequentially as in (I). 

For BPM, it has been shown in [113] that  the SC is independent of the updating 
sequence. In contrast here [117, 118]the SC does depend on the updating sequence 
because culling at one site may inhibit growth at a neigboring site and vice versa. 
This is seen by considering the neighbor numbers at all sites of the lattice. When 
n~ < m the culling of the site i reduces the neighbor numbers at all neighboring sites 
by one i.e., nj --* nj - 1 where as the growth at i enhances the neighbor numbers at 
all neighboring sites i.e., nj ~ nj + 1. Therefore the culling at one site may suppress 
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Figure 6.6: The plot of the standard deviation in p(seq) for m = 3 on a cubic lattice 
for finite system sizes L as a function of L. From the plot we get the value of v to 
be 0.90(3). 

the growth at a neighboring site and vice versa. In Fig.6.2(a) we show an example 
where two different updating sequences lead to different SCs. On the other hand, in 
a fully parallel update all sites of the lattice are updated simultaneously at a certain 
time depending on the configuration at the previous time. There may arise some 
situations as shown in Fig.6.2(b) where a particular cluster of sites never goes to a 
stable configuration but takes two different configurations alternately in a two cycle 

periodic state. 

6.2.2 Clusters in the stable configurations 

A cluster of occupied sites, in which every site has at least m occupied neighbors, is 
called an m-cluster [110]. Imposition of our diagenetic rules imply that  the surviving 
clusters in SC must be m clusters. An isolated cluster of occupied sites in a d- 
dimensional hypercubic lattice always has some convex corners on the surface with 
d neighbors. Therefore in the case when m > d + 1 these sites are always unstable 
and therefore, the SC cannot have any finite cluster and has only one infinite m- 
cluster. A SC at the percolation threshold for m = 2 on a square lattice is shown in 
Fig,6.3, the smallest isolated clusters being of size 4. 

6.3 Resu l t s  

The average fraction r of the occupied sites in the SC is defined as the porosity 
of this model. We measure this porosity as a function of the probability p and this 
variation is plotted in Fig.6.4. We find no trace of any system size dependence on 
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Figure 6.7: The average mass of the infinite cluster S~ (circle) and the largest 
cluster 2S~ (square) at t he  diagenetic percolation threshold p2c(L) are plotted with 
the system size L on a square lattice. Average fractal dimension is obtained from 
the linear fits shown by continuous lines. The inset shows the variations of the local 
slopes d/(L) andwe  conclude a value of the fractal dimension d / =  1.89 + 0.02. 

this variation. A functional form like 

r = 1/[1 + exp((1/2 - p)/Ap)] (6.7) 

fits very well to this data both in two and in three dimensions with a value of Ap _-- 
0.072 in two dimension [117] whereas Ap=0.031 in three dimensions [118]. The 
data as well as the fit are very well consistent to r = 1/2 as expected from 
the symmetry of occupied and vacant sites. Compared to the porosity r = p in 
the initial random distribution of occupied and vacant sites, the porosity in SC is 
reduced by an order of magnitude when p < 0.35. We consider this as the reflection 
of the diagenesis process in nature observed in our model. 

6.3.1 The Diagenetic percolation threshold 

Like BPM, the culling condition in our model does not contribute to change the 
percolation threshold for m _< 2. For example, nothing is culled for m=O, isolated 
sites are culled for m -- 1 and the dangling chain of sites are culled for m = 2. 
Since the connectivity of the system is not affected by these culling processes, the 
difference between p,~c and pc(ord) is due to the growing condition for m < 2, where 
pc(ord) is the ordinary percolation threshold. For p values very close to pc(ord) but 
smaller than it, there may be some initial configurations which are not connected 
because of the presence of only few vacant sites. If these sites have more than m 
occupied neighbors they will now be occupied ensuring the global connectivity of the 
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Figure 6.8: The distribution of the cluster sizes of the stable configuration at the 
percolation threshold of a square lattice of size L = 2048 and with m = 2. 

system�9 Therefore it is expected that  the Pmc <- pc(ord) for m < 2 on an arbitrary 
lattice. Therefore as the growth rule helps in attaining a connectivity in the system 
we expect Prnc <- p c ( B P M )  for any arbitrary lattice and for any arbitrary value of 
m � 9  

The percolation threshold Pmc is the minimum value of the probability p beyond 
which an infinite cluster of occupied sites exists with probability one in the SC 
on an infinitely large system. However, for systems of finite size this threshold 
Pmc(L) depends on the system size. The correlation function g(r) for the percolation 
problem is defined as the probability that  a site at a distance r apart from an 
occupied site belongs to the same cluster�9 For p < P,~c the correlation function is 
expected to decay exponentially as g(r) ,,~ exp ( - r /~ )  where the correlation length 
~, a measure of the typical cluster diameter, diverges as ~ ~ (p,~c - p)-V where, v is 
the correlation length exponent for the diagenetic percolation. 

We use the standard method of estimating the value of the percolation threshold. 
Using a specific sequence of random numbers, the lattice is filled at some high value 
of p = Phi such that  its SC has an infinite cluster. Similarly using the same sequence 
of random numbers, the lattice is filled at some low value of p = P~o so that  its 
corresponding SC does not have an infinite cluster�9 It is then similarly tried at a 
P = (Phi + plo)/2. If its SC is connecting then Phi is equated to p, otherwise Pzo is 
equated to p. This process is continued till the difference (Phi --  Plo) is less than a 
certain pre-assigned small number ~ = 10 -5 when p(seq) = (Phi + plo)/2 is taken for 
the percolation threshold for this particular sequence of random numbers. Averaging 
over the p(seq) values for a large number of independent random number sequences 
one obtains the estimate for pine(L). 

In this process, we tune the probability p to the percolation threshold pine(L) on 
a system of size L so that  the correlation length is of the same order as the system 
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Figure 6.9: The plot of the percolation probability P2(P, L) for m = 2 of the di- 
agenetic percolation on the square lattice for three different system sizes L = 256 
(circle), 512 (square) and 1024 (triangle). 

size. Therefore, L ,,., (Pmc -Prnc(L)) -~ which implies 

pmc(L) = Pm~ + A.L -1/" (6.8) 

We plot p2c(L) on a square lattice in Fig.6.5. with L -1/" and we try u -- 4/3, the 
value for the correlation length exponent in the ordinary percolation in 2-d. We 
observe a linear variation for large L values. On extrapolation, we find a slightly 
larger value of P2c = 0.5005(2) for sequential updating of type (I) as stated above. 
The p2c(L) values for L=2048, 2896 and 4096 are found larger than 1/2. For the 
random and sub-lattice sequential updatings the p2c "r are 0.5013 and 0.5009 
respectively. These values should compared to the ordinary percolation threshold of 
0.592746 on square lattice [119]. 

Since m -- 2 is the middle point of the five possible values of the neighbor numbers 
on a square lattice (i.e. from 0 to 4) and due to the equivalence of vacant and 
occupied sites, it may be expected that  p2c should be exactly equal to 1/2. However, 
we argue that  the value of P2c very close to 1/2 is actually accidental and there is 
no reason why it should be 1/2. We believe that  first appearance of the global 
connectivity through occupied sites determining the percolation threshold is a very 
special situation and since we want this connectivity through the occupied sites 
we break the symmetry between the occupied and vacant sites. Similar to Fig.6.5, 
in 3-dimension from the plot of p3c(L) with L -1/" we tried u = 0.878 [119], the 
value of the correlation length exponent for ordinary percolation in 3-dimension. 
We observe a linear variation for large L values. On extrapolation, we find the 
value of P3c = 0.444(5) for sequential updating where sites are labeled from 1 to 
L 3 sequentially increasing the x, y and z coordinates. However, for m = 3 on the 
triangular lattice the value of the percolation threshold is obtained as 0.50 4- 0.01. 
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Figure 6.10: The diagenetic percolation probability P2(P, L) as shown in the previous 
figure for the square lattice of different system sizes are scaled as P2(p, L)L ~/'~ with 
[p - p2c(L)]L 1/~. The collapse is obtained using u=4/3 and ~/u =0.125. 

The p(seq) values corresponding to different sequences of random numbers are 
spread around their mean value Pine(L). The root mean square deviation from the 
average value 

A(L) = (< p(seq) a > -[pmc(L)]2) 1/2 (6.9) 

is supposed to have a dependence on the system size L as: A(L) ,,~ L -1/v. Plotting 
A(L) vs. L for m = 2 on a square lattice on a double logarithmic scale which fits 
nicely to a straight line gives a value for the correlation length exponent u = 1.35(2). 
In Fig.6.6 we plot A(L) vs. L for m = 3 on a cubic lattice on a double logarithmic 
scale which fits nicely to a straight line giving a value for the correlation length 
exponent u = 0.90(3). 

A spin model on a square lattice where each spin +1 was flipped only when 
more than half of its four neighbors point into the opposite direction was studied in 
[120]. Using a much bigger system size (L ~ 7 • 10 ~) compared to what we used, a 
percolation threshold of 0.5007 + 0.0001 was estimated which is consistent with our 
results. 

6.3.2  Clus ter  s tat i s t ics  

The fractal dimension df of the "infinite" incipient cluster (IIC) of the SC exactly at 
the percolation threshold is also calculated. A large number of SCs are generated at 
P = P2c. The average size Soo of the IIC is calculated in two ways: (i) Average size 
S~(L) of the infinite clusters is measured over the spanning SCs only (ii) Average 
size S~(L) of the largest cluster is calculated over all SCs. Defining the percolation 
probability on a square lattice as, S~(L) = L2P2(p2c(L), L). Both measures of the 
IIC are expected to give the fractal dimension: S~2(L) ~ L dr. In Fig.6.7 we plot 
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Figure 6.11: A stable configuration (SC) at the percolation threshold for a square 
lattice of system size of L -- 80 and with m=3. Sites on the "infinite" incipient 
cluster are joined by lines. 

both S~(L) and 2S~(L) with L for a square lattice on a double logarithmic scale for 
the system sizes varying from 16 to 4096. The average slopes are 1.863 and 1.860 for 
S~(L) and S~(L) respectively. Further, we plot the local slopes dr(L) with 1/L in 
the inset of Fig.6.7. After considerable variation over the small systems the fractal 
dimension seems to converge at 1.89 4-0.02 for the large system sizes compared 
to 91/48 of the ordinary percolation [72] in 2-d. Using the same procedure for 
3-dimension we obtained the value for the fractal dimension to be 2.32(10). 

The cluster size distribution of occupied sites on the SCs are also measured at 
the percolation threshold. We define Prob2(S, L) as the probability of a cluster of 
S occupied sites on a SC of a square lattice of system size L with m = 2. We start 
from many independent configurations at p2c(L) -~ 0.5001 for L -- 2048. These are 
sub-critical configurations for the ordinary percolation. We measure the Prob2(S, L) 
at each time step and keep track of how this distribution changes from the initial 
exponential distribution to the power, law distribution as shown in Fig.6.8. We 
notice that at very short times of the order of i, the distribution takes the form of 
the steady state distribution. In this distribution we do not include the "infinite" 
cluster spanning the system. As expected the distribution appears to be a power 
law: Prob2(S, L) ~ S -r where T = 2.02 • 0.06 is obtained compared to 187/91 for 
the ordinary percolation [72] in 2-d. For m = 3 on a cubic lattice we start from 
many independent configurations at p3c(L) ~ 0.4428 for L = 150. We measure 
the Prob3(S, L) at each time step. We find that this distribution changes from the 
initial exponential distribution to the power law distribution Prob3(S, L) ~ S -r 
where 7 -- 2.19(5) is obtained compared to 2.18 for the ordinary percolation [72] in 
3-d. 
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Figure 6.12: On a square lattice plot ofp3c(L) with 1/log(L) which on extrapolation 
to L ~ c~ gives Pac = 0.96 5= 0.01. 

6.3.3 Order parameter 

The order parameter is the percolation probability Pro(P) that  is the average fraction 
of sites on the largest occupied cluster in the SC. For finite systems it is denoted by 
Pro(P, L).  Variation of the percolation probability is shown in Fig.6.9 and it varies 
a s :  

P m ( p , L )  ~ [p - pmc(L)] ~ (6.10) 

This variation is true in the limit of L --* c~. For finite systems however, according 
to the scaling theory [72], the scaling variable should be L/~ ,  where the correlation 
length is defined as ~ - [p - pine(L)] -~'. Therefore for a finite system of size L the 
variation of percolation probability should be: 

P m ( p , L )  = L-~ /VF[(p  - pmc(L) )L  1/'] (6.11) 

where, the scaling function F ( x )  ---+ x ~ for large L. We show the collapse of the 
data for m -- 2 on a square lattice in Fig.6.10 using this scaling formulation. We 
again try v = 4/3 and then obtain a value of ~ /~  = 0.125 for the data collapse, 
giving/~ = 0.166 for m = 2 on a square lattice compared to 5/36 for the ordinary 
percolation in 2-d [72]. For m = 3 on a cubic lattice we obtain v = 1/1.1 = 0.909 
and/~/v=0.54 giving ~=0.49 compared to 0.41 in ordinary percolation in the three 
dimensions [72]. 

6.3.4 Percolat ion threshold for different m-values 

Next we studied the case of m = 3  on the square latt ice.  In this case the SC can 
only be completely vacant or it can have only one infinite cluster but cannot have 
isolated clusters. Since in general there will always be some sites which have less 
than 3 occupied neighbors on the surface of an isolated cluster, these sites will be 
unstable under the diagenetic rules and the cluster will therefore cannot survive in 
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m d=2 d=3 

1 0.04(2) ~ 0 
2 0.5005(2) 0.20(2) 
3 0.96(2) 0.444(5) 
4 o.so(2) 
5 ~ 1  

Table 6.1: The diagenetic percolation thresholds Pmc for different values of m for 
two and three dimensions. 

SC. In Fig.6.11 we show the picture of a SC for m=3 on a square lattice. It is a simple 
spanning cluster having many rectangular holes as in BPM [112]. The percolation 
threshold p3c(L) also has L dependence and on extrapolation with i/log(L) (as was 
done in BPM) we get P3c = 0,96 • 0.01 (Fig.6.12). 

Finally we studied the diagenetic percolation thresholds for m--i,2,4,5 as well 
again on the cubic lattice. These values are given in Table 6.1. 

6 . 4  C o n c l u s i o n  

We studied a geometrical model using the percolation theory of critical phenomena 
of disordered systems for the process of diagenesis active in natural sedimentary 
rock formations. The restructuring process of diagenesis involve two basic processes 
namely the cementation and dissolution which have been studied using a percolation 
type of model by the culling of occupied sites in rarefied and growth of vacant sites in 
dense environments sites depending on some preassigned integer parameter value m. 
We numerically study the percolation thresholds of this model for different values of 
m both in two and in three dimensions and observe that they are always lower than 
the ordinary percolation thresholds in similar lattices. This implies that though 
our model indeed reduces the percolation threshold (compare it with porosity in 
sedimenary rocks) it is not successful enough to reduce it near zero. 

We also studied the critical behavior of such diagenetic percolations. The most 
interesing situation is when growth and culling are equally competitive i.e., the case 
when m = 2 on a square lattice and the case when m -- 3 on a simple cubic lattice. 
Our numerical study indicates a percolation like continuous transition for these sit- 
uations. Simulations shows that the porosity is highly reduced due to restructuring 
as is observed in rocks. We also observe .that starting from the sub-critical configura- 
tions of ordinary percolation at a certain threshold value Pmc of the pore probability 
the system evolves to a globally connected porous space at the stable state. This 
configuration is critical since it shows long range correlations. Our numerical results 
give strong indications that the stable states in this model have the same critical 
behavior as that of ordinary percolation. We view the dynamics under diagenetic 
rules as a self-organizing dynamics in a limited sense since one has to tune p to arrive 
at a specific sub-critical configuration at Pmc so that it organizes to show criticality 
in the stable state. 
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